Linear-size approximations to the vietoris-rips filtration
The Vietoris–Rips filtration is a versatile tool in topological data analysis. It is a sequence of simplicial complexes built on a metric space to add topological structure to an otherwise disconnected set of points. It is widely used because it encodes useful information about the topology of the u...
Uloženo v:
| Vydáno v: | Discrete & computational geometry s. 778 - 796 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Springer Verlag
2013
|
| Témata: | |
| ISSN: | 0179-5376, 1432-0444 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Vietoris–Rips filtration is a versatile tool in topological data analysis. It is a sequence of simplicial complexes built on a metric space to add topological structure to an otherwise disconnected set of points. It is widely used because it encodes useful information about the topology of the underlying metric space. This information is of-ten extracted from its so-called persistence diagram. Unfortunately, this filtration is often too large to construct in full. We show how to construct an O(n)-size filtered simplicial complex on an n-point metric space such that its persistence diagram is a good approximation to that of the Vietoris–Rips filtration. This new filtration can be constructed in O(n log n) time. The constant factors in both the size and the run-ning time depend only on the doubling dimension of the metric space and the desired tightness of the approximation. For the first time, this makes it computationally tractable to approximate the persistence di-agram of the Vietoris–Rips filtration across all scales for large data sets. We describe two different sparse filtrations. The first is a zigzag filtration that removes points as the scale increases. The second is a (non-zigzag) filtration that yields the same persistence diagram. Both methods are based on a hierarchical net-tree and yield the same guar-antees.
La filtration de Vietoris-Rips est un outil très versatile en analyse topologique des données. C'est une séquence de complexes simpliciaux construits sur une métrique pour ajouter de la structure topologique à un nuage de points. Malheureusement, cette filtration est souvent trop large pour tenir entièerement en mémoire. Nous montrons comment construire un complexe simplicial filtré de taille O(n) à partir d'un espace métrique fini composé de n points, de manièere à ce que le diagramme de persistance de ce complexe filtré soit une bonne approximation de celui de la filtration de Vietoris-Rips. |
|---|---|
| AbstractList | The Vietoris–Rips filtration is a versatile tool in topological data analysis. It is a sequence of simplicial complexes built on a metric space to add topological structure to an otherwise disconnected set of points. It is widely used because it encodes useful information about the topology of the underlying metric space. This information is of-ten extracted from its so-called persistence diagram. Unfortunately, this filtration is often too large to construct in full. We show how to construct an O(n)-size filtered simplicial complex on an n-point metric space such that its persistence diagram is a good approximation to that of the Vietoris–Rips filtration. This new filtration can be constructed in O(n log n) time. The constant factors in both the size and the run-ning time depend only on the doubling dimension of the metric space and the desired tightness of the approximation. For the first time, this makes it computationally tractable to approximate the persistence di-agram of the Vietoris–Rips filtration across all scales for large data sets. We describe two different sparse filtrations. The first is a zigzag filtration that removes points as the scale increases. The second is a (non-zigzag) filtration that yields the same persistence diagram. Both methods are based on a hierarchical net-tree and yield the same guar-antees.
La filtration de Vietoris-Rips est un outil très versatile en analyse topologique des données. C'est une séquence de complexes simpliciaux construits sur une métrique pour ajouter de la structure topologique à un nuage de points. Malheureusement, cette filtration est souvent trop large pour tenir entièerement en mémoire. Nous montrons comment construire un complexe simplicial filtré de taille O(n) à partir d'un espace métrique fini composé de n points, de manièere à ce que le diagramme de persistance de ce complexe filtré soit une bonne approximation de celui de la filtration de Vietoris-Rips. |
| Author | Sheehy, Donald |
| Author_xml | – sequence: 1 givenname: Donald surname: Sheehy fullname: Sheehy, Donald organization: Geometric computing |
| BackLink | https://inria.hal.science/hal-01111878$$DView record in HAL |
| BookMark | eNotjsFLwzAYxYNMsJuevfbqITNfmqT5vI2hm1Dwsp1L2qQsUpuSlKH-9dbpuzzej8fjLcliCIMj5B7YGkDIR84VcMnWF9fqimQgCk6ZEGJBMgYlUlmU6oYsU3pnjAlkOiNPlR-ciTT5b5ebcYzh03-YyYch5VPIp5PLz95NIfpEox9T3vl-ipfCLbnuTJ_c3b-vyPHl-bDd0-pt97rdVNRwKBVtHTjspJQaDEhp52CFwgZ4J7DhTYvalq61BrmyjeBoZo44N5ALy02xIg9_uyfT12Oc78WvOhhf7zdV_csYzNKlPkPxA7DVTUA |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 1XC VOOES |
| DOI | 10.1145/2261250.2261286 |
| DatabaseName | Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1432-0444 |
| EndPage | 796 |
| ExternalDocumentID | oai:HAL:hal-01111878v1 |
| GroupedDBID | -DZ -Y2 -~C -~X .4S .86 .DC 06D 0R~ 0VY 199 1N0 1SB 1XC 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 692 6NX 78A 88I 8AO 8FE 8FG 8FW 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AAKPC AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIHN ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C1A CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KQ8 L6V LAS LLZTM LO0 M2O M2P M4Y M7S MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P62 P9R PADUT PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I REI RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOOES W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX |
| ID | FETCH-LOGICAL-a2176-ce1e9f55581a155de9fd469b12f49b2bc98d7ecda926db429af499969b924d2a3 |
| ISSN | 0179-5376 |
| IngestDate | Tue Oct 14 20:28:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a2176-ce1e9f55581a155de9fd469b12f49b2bc98d7ecda926db429af499969b924d2a3 |
| OpenAccessLink | https://inria.hal.science/hal-01111878 |
| PageCount | 19 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01111878v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2013 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete & computational geometry |
| PublicationYear | 2013 |
| Publisher | Springer Verlag |
| Publisher_xml | – name: Springer Verlag |
| SSID | ssj0004908 |
| Score | 2.0629203 |
| Snippet | The Vietoris–Rips filtration is a versatile tool in topological data analysis. It is a sequence of simplicial complexes built on a metric space to add... |
| SourceID | hal |
| SourceType | Open Access Repository |
| StartPage | 778 |
| SubjectTerms | Computational Geometry Computer Science |
| Title | Linear-size approximations to the vietoris-rips filtration |
| URI | https://inria.hal.science/hal-01111878 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1432-0444 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1432-0444 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: K7- dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1432-0444 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1432-0444 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1432-0444 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1432-0444 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1432-0444 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004908 issn: 0179-5376 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLamssM4jMGYNthQNHFDHo3rxPFu3QB1WldVwCRukZM4tNJIESmo2l-_zz_apsCBHbg4iRNFib_kvfc92d8jZL8dw-dlPKeqVCWFh4pohsjXUhURFTHiOSvi2heDQXJxIYe-SmdtywmIqkpmM3n9rFCjD2CbpbP_AffipujAPkBHC9jRPgl4sEu8Eq3Hf7VTDJ-Nr_x8Nx9nwhUaaZCawmDURpnJS-c2A9WjMewJAmr7aeS29MM8bXipJ1d6upw-fDbS2mHlEs3NRIJbAbqSQjxopBB9tlFIavRenLNwFpJ3GDUicw2rJ1wVHu9AhStR-9A2cyNjwYxmWdT-YrePqWD3umfp8Ogk7f8Y_Fw925g62Ov20Y7UH9o2Nj8RyR0o8BoT4EctsvbteDA8XS6PlbYw4eJtvMITnufw3tMgwBjNE-o2wDh_Q157ZhB0HaKb5IWutsjGvOpG4I3wFln_tVDard-Srw24g1W4g-kkwJXBCtzBEu5t8vvk-Px7j_p6GFTh94lprkMtSyPQFiqEgQUOCh7LLGQllxnLcpkUQueFkiwuMgQaqrR8VmYg2QVTnXekVU0q_Z4EpeYx43GUhzzjoe7InIcljxTvgEGAMn8gnzEQ6bVTPEmNBjmGPDV9ywHfecpFu-QVsxVETNbqI2lNb271J_Iyv5uO65s9D9U_q69Kbw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear-size+approximations+to+the+vietoris-rips+filtration&rft.jtitle=Discrete+%26+computational+geometry&rft.au=Sheehy%2C+Donald&rft.date=2013&rft.pub=Springer+Verlag&rft.issn=0179-5376&rft.eissn=1432-0444&rft.spage=778&rft.epage=796&rft_id=info:doi/10.1145%2F2261250.2261286&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01111878v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0179-5376&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0179-5376&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0179-5376&client=summon |