Damage Assessment from Social Media Imagery Data During Disasters

Rapid access to situation-sensitive data through social media networks creates new opportunities to address a number of real-world problems. Damage assessment during disasters is a core situational awareness task for many humanitarian organizations that traditionally takes weeks and months. In this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) s. 569 - 576
Hlavní autoři: Nguyen, Dat T., Ofli, Ferda, Imran, Muhammad, Mitra, Prasenjit
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 31.07.2017
Edice:ACM Conferences
Témata:
ISBN:1450349935, 9781450349932
ISSN:2473-991X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rapid access to situation-sensitive data through social media networks creates new opportunities to address a number of real-world problems. Damage assessment during disasters is a core situational awareness task for many humanitarian organizations that traditionally takes weeks and months. In this work, we analyze images posted on social media platforms during natural disasters to determine the level of damage caused by the disasters. We employ state-of-the-art machine learning techniques to perform an extensive experimentation of damage assessment using images from four major natural disasters. We show that the domain-specific fine-tuning of deep Convolutional Neural Networks (CNN) outperforms other state-of-the-art techniques such as Bag-of-Visual-Words (BoVW). High classification accuracy under both event-specific and cross-event test settings demonstrate that the proposed approach can effectively adapt deep-CNN features to identify the severity of destruction from social media images taken after a disaster strikes.
AbstractList Rapid access to situation-sensitive data through social media networks creates new opportunities to address a number of real-world problems. Damage assessment during disasters is a core situational awareness task for many humanitarian organizations that traditionally takes weeks and months. In this work, we analyze images posted on social media platforms during natural disasters to determine the level of damage caused by the disasters. We employ state-of-the-art machine learning techniques to perform an extensive experimentation of damage assessment using images from four major natural disasters. We show that the domain-specific fine-tuning of deep Convolutional Neural Networks (CNN) outperforms other state-of-the-art techniques such as Bag-of-Visual-Words (BoVW). High classification accuracy under both event-specific and cross-event test settings demonstrate that the proposed approach can effectively adapt deep-CNN features to identify the severity of destruction from social media images taken after a disaster strikes.
Author Imran, Muhammad
Nguyen, Dat T.
Mitra, Prasenjit
Ofli, Ferda
Author_xml – sequence: 1
  givenname: Dat T.
  surname: Nguyen
  fullname: Nguyen, Dat T.
  email: ndat@hbku.edu.qa
  organization: Qatar Computing Research Institute, HBKU, Doha, Qatar
– sequence: 2
  givenname: Ferda
  surname: Ofli
  fullname: Ofli, Ferda
  email: fofli@hbku.edu.qa
  organization: Qatar Computing Research Institute, HBKU, Doha, Qatar
– sequence: 3
  givenname: Muhammad
  surname: Imran
  fullname: Imran, Muhammad
  email: mimran@hbku.edu.qa
  organization: Qatar Computing Research Institute, HBKU, Doha, Qatar
– sequence: 4
  givenname: Prasenjit
  surname: Mitra
  fullname: Mitra, Prasenjit
  email: pmitra@psu.edu
  organization: The Pennsylvania State University, University Park, PA, USA
BookMark eNqNkD1PwzAQhs2XRFs6M7B4ZEnxxbEbj1XDR6UiBkBis87upQo0CbLD0H9PonZgZDi90j3P3fCO2XnTNsTYNYgZQKbuJIAQqZoNCcKcsHG_FTIzRqpTNkqzuUyMgY-zv-CSTWP8FP0h5P3IEVsUWOOW-CJGirGmpuNlaGv-2voKd_yZNhXy1aCEPS-wQ178hKrZ8qKKGDsK8YpdlLiLND3mhL0_3L8tn5L1y-NquVgnmILqEi_QlV54KRS4LAdttNvk5DPhNUFO2pW6LNErN5deAagNYa7JuVSD9-jlhN0c_lZEZL9DVWPYWyO0Aal7enug6Gvr2vYrWhB2aMoem7LHpnp19k_VulBRKX8BwNtmJw
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3110025.3110109
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Sociology & Social History
EISBN 1450349935
9781450349932
EISSN 2473-991X
Editor Diesner, Jana
Ferrari, Elena
Xu, Guandong
Editor_xml – sequence: 1
  givenname: Jana
  surname: Diesner
  fullname: Diesner, Jana
– sequence: 2
  givenname: Elena
  surname: Ferrari
  fullname: Ferrari, Elena
– sequence: 3
  givenname: Guandong
  surname: Xu
  fullname: Xu, Guandong
EndPage 576
ExternalDocumentID 9069136
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
LHSKQ
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a215t-c0abfc0c3051b481696bd8ec40c6e18e6bf6ffac5b73c5115dea86ebb261ccac3
IEDL.DBID RIE
ISBN 1450349935
9781450349932
IngestDate Tue Nov 04 05:04:26 EST 2025
Thu Jul 10 05:53:09 EDT 2025
Thu Jul 10 05:53:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName ASONAM '17: Advances in Social Networks Analysis and Mining 2017
MergedId FETCHMERGED-LOGICAL-a215t-c0abfc0c3051b481696bd8ec40c6e18e6bf6ffac5b73c5115dea86ebb261ccac3
PageCount 8
ParticipantIDs acm_books_10_1145_3110025_3110109_brief
acm_books_10_1145_3110025_3110109
ieee_primary_9069136
PublicationCentury 2000
PublicationDate 20170731
2017-July
PublicationDateYYYYMMDD 2017-07-31
2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 20170731
  day: 31
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
PublicationTitleAbbrev ASONAM
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002180213
ssj0001615928
Score 2.143791
Snippet Rapid access to situation-sensitive data through social media networks creates new opportunities to address a number of real-world problems. Damage assessment...
SourceID ieee
acm
SourceType Publisher
StartPage 569
SubjectTerms Computing methodologies
Computing methodologies -- Artificial intelligence
Computing methodologies -- Artificial intelligence -- Natural language processing
Computing methodologies -- Artificial intelligence -- Natural language processing -- Information extraction
Computing methodologies -- Machine learning
Computing methodologies -- Machine learning -- Machine learning approaches
Computing methodologies -- Machine learning -- Machine learning approaches -- Neural networks
Human-centered computing
Human-centered computing -- Collaborative and social computing
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools -- Social networking sites
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing theory, concepts and paradigms
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing theory, concepts and paradigms -- Social media
Information systems
Information systems -- Information retrieval
Information systems -- Information retrieval -- Retrieval tasks and goals
Information systems -- Information retrieval -- Retrieval tasks and goals -- Sentiment analysis
Information systems -- Information systems applications
Title Damage Assessment from Social Media Imagery Data During Disasters
URI https://ieeexplore.ieee.org/document/9069136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8IwFH6o7LCTmzqm-0EGY7us2pg2aY4yJ9tFPGzgrSTpK3hQhz8G_vdL0qoMBmOnpuUdype-vpfkfd8DuM8MxplgPBBcYhBlSgaqH0aBdSUaoQ6RSu2bTYjxOJlO5aQCTwcuDCL64jPsuqE_y8-WZuu2ynoy5JIyXoWqELzgah33U2xolmUq7e77TtqMslLNh0Zxjzl1tH7cdVdfgFhVZv6jqYqPKaP6_97mDFpHch6ZHMLOOVRw0YD6vjsDKZ21AZ0DF4U8kIKFSwpRkF0TBkM1t38SMjgIcxJHNNnbueMbRd6cyWpHhmqjyNDzGclwtlZOW2Hdgo_Ry_vza1B2U7Dg03gTmFDp3ITGOjjVUUK55DpL0ESh4UgT5Drnea5MrAUzNg2LM1QJR63tGstOs2EXUFssF3gJBHMTMRabLBd2oKTmubCZEPOtrFGINtxZaFO3TFinBfM5Tkv40xL-Njz-aZPq1QzzNjQd-OlnIb-Rlrh3fn98Bad9F3l9Re011DarLd7AifnazNarW__NfAPUX7w8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50FfS0PnF9RhC9WG2aR5ujuC4r6rKHFbyVJJ3CHtyVfQj-e5O0rgiCeGpa5lC-dDqTZL5vAM4Ki6JImYxSqTDihVaRTmIeOVeiHE2MVJnQbCLt9bKXF9VfgssFFwYRQ_EZXvlhOMsvxnbut8quVSwVZXIZVgTnSVyxtb53VFxwVnUy7e8TL25GWa3nQ7m4Zl4fLRFX_hpKEJe1ff3RViVElU7zf--zATvf9DzSXwSeTVjC0RY0v_ozkNpdt2B_wUYh56Ti4ZJKFuRjG27a-tX9S8jNQpqTeKrJl50_wNHk3ptMPkhbzzRpB0YjaQ-n2qsrTHfguXM3uO1GdT8FBz8Vs8jG2pQ2ts7FqeEZlUqaIkPLYyuRZihNKctSW2FSZl0iJgrUmURj3CrLTbRlu9AYjUe4BwRLyxkTtihTN9DKyDJ1uRALzawxTVtw6qDN_UJhmlfcZ5HX8Oc1_C24-NMmN5Mhli3Y9uDnb5UAR17jvv_74xNY6w6eHvPH-97DAawnPg6H-tpDaMwmczyCVfs-G04nx-H7-QTPzb-D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+2017&rft.atitle=Damage+Assessment+from+Social+Media+Imagery+Data+During+Disasters&rft.au=Nguyen%2C+Dat+T.&rft.au=Ofli%2C+Ferda&rft.au=Imran%2C+Muhammad&rft.au=Mitra%2C+Prasenjit&rft.series=ACM+Conferences&rft.date=2017-07-31&rft.pub=ACM&rft.isbn=1450349935&rft.spage=569&rft.epage=576&rft_id=info:doi/10.1145%2F3110025.3110109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/sc.gif&client=summon&freeimage=true