Transfer Learning Leveraging the Capability of Pre-trained Models Across Different Domains

This edited volume explores the potential of transfer learning in advancing artificial intelligence (AI) across diverse domains. Transfer learning enables AI systems to leverage knowledge gained from one task to enhance performance in another, significantly reducing data requirements and training ti...

Celý popis

Uloženo v:
Podrobná bibliografie
Médium: E-kniha
Jazyk:angličtina
Vydáno: IntechOpen 2025
Edice:Artificial Intelligence
Témata:
ISBN:0850142466, 9780850142471, 0850142482, 9780850142488, 0850142474, 9780850142464
ISSN:2633-1403
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This edited volume explores the potential of transfer learning in advancing artificial intelligence (AI) across diverse domains. Transfer learning enables AI systems to leverage knowledge gained from one task to enhance performance in another, significantly reducing data requirements and training time while improving model efficiency. The book presents the latest approaches for implementing transfer learning in various contexts, from telecommunications and brain-computer interfaces to quantum computing applications. Readers will discover innovative techniques for domain adaptation, cross-domain knowledge transfer, and hybrid classical-quantum implementations. The text addresses critical challenges in making transfer learning more explainable, reliable, and scalable, particularly concerning privacy preservation and computational efficiency. Key topics include AI-native networks, neural network transfer learning, domain adaptation strategies, and quantum machine learning integration. Both theoretical frameworks and practical implementations are discussed, making this book valuable for researchers, practitioners, and students interested in developing more efficient and capable AI systems. The content bridges the gap between theoretical understanding and practical application, offering insights into how transfer learning can be effectively deployed in real-world scenarios. By examining transfer learning through multiple lenses, from traditional neural networks to quantum computing, this volume provides a unique perspective on the future of AI development and its potential to revolutionize various technological sectors.
AbstractList This edited volume explores the potential of transfer learning in advancing artificial intelligence (AI) across diverse domains. Transfer learning enables AI systems to leverage knowledge gained from one task to enhance performance in another, significantly reducing data requirements and training time while improving model efficiency. The book presents the latest approaches for implementing transfer learning in various contexts, from telecommunications and brain-computer interfaces to quantum computing applications. Readers will discover innovative techniques for domain adaptation, cross-domain knowledge transfer, and hybrid classical-quantum implementations. The text addresses critical challenges in making transfer learning more explainable, reliable, and scalable, particularly concerning privacy preservation and computational efficiency. Key topics include AI-native networks, neural network transfer learning, domain adaptation strategies, and quantum machine learning integration. Both theoretical frameworks and practical implementations are discussed, making this book valuable for researchers, practitioners, and students interested in developing more efficient and capable AI systems. The content bridges the gap between theoretical understanding and practical application, offering insights into how transfer learning can be effectively deployed in real-world scenarios. By examining transfer learning through multiple lenses, from traditional neural networks to quantum computing, this volume provides a unique perspective on the future of AI development and its potential to revolutionize various technological sectors.
BookMark eNotzj1LBDEQgOGAJ3hfhaVg4R_YM5kkk2wph57Cgs1dfUwys7ooiWz8_yho9XYP70otSi2i1I3ROx8C3E_lW_J7_ZKyM8aFGC_USkevjQOHuFBLQGs747S9UtvWpqRRQw8IYamujzOVNsp8NwjNZSpvG3U50meT7X_X6vT0eNw_d8Pr4WX_MHQExofOChuTMTuOkYmBOWESrTFHThSJMkWdSEsOgH5E60eCxBKAe4bo7Frd_rmVfs_PXCnV-tHOBo3vo_0BI0k9hg
ContentType eBook
DBID V1H
DOI 10.5772/intechopen.114788
DatabaseName DOAB: Directory of Open Access Books
DatabaseTitleList
Database_xml – sequence: 1
  dbid: V1H
  name: DOAB: Directory of Open Access Books
  url: https://directory.doabooks.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Editor Abdul Majeed, Anwar P.P
Editor_xml – sequence: 1
  fullname: Abdul Majeed, Anwar P.P
ExternalDocumentID 161598
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
V1H
ID FETCH-LOGICAL-a2157-3ed11c6c4d88dad2ddb6be006c8dba8aaca80ba0ec7265f635fa2bde72d9d2843
IEDL.DBID V1H
ISBN 0850142466
9780850142471
0850142482
9780850142488
0850142474
9780850142464
ISSN 2633-1403
IngestDate Wed Oct 08 01:16:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2157-3ed11c6c4d88dad2ddb6be006c8dba8aaca80ba0ec7265f635fa2bde72d9d2843
OpenAccessLink https://directory.doabooks.org/handle/20.500.12854/161598
PageCount 126
ParticipantIDs oapen_doabooks_161598
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationSeriesTitle Artificial Intelligence
PublicationYear 2025
Publisher IntechOpen
Publisher_xml – name: IntechOpen
SSID ssib060292627
ssib060311530
ssib044730443
Score 2.3825045
Snippet This edited volume explores the potential of transfer learning in advancing artificial intelligence (AI) across diverse domains. Transfer learning enables AI...
SourceID oapen
SourceType Publisher
SubjectTerms Computer science
Computing and Information Technology
Mathematical theory of computation
Subtitle Leveraging the Capability of Pre-trained Models Across Different Domains
Title Transfer Learning
URI https://directory.doabooks.org/handle/20.500.12854/161598
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgZWBqgSK-1YE1NPF3ZkTVqWIA1K06fyGWBLWF38_ZSUQ6MDE-K4udy91zzn6PkHsRQmCidFkJuc245jrTBfAMKx8LAN7lOSSzCbVc6tWqfO5ZfTWJvI6nmmuIPHOb2vmN5ADu1B9EHhURtOCzyFVKfUiGuMWR8TTXW7HoQolzjNyespvMaRTGU784qswkJxIqGcuial1Sh4xtNsql7AHFe0DTVrWne5LvY1XsY62bVqpAFjuLChCY1D59FSV6VXR7GdaAsFfS5qN_LMaYDH28I3FCDnx1SkadM8S0TRRnZJxKYMChVr_1fUJe508vj4usNV_IAFkAJh7visJKy53WDhx1zkjj8Ru12hnQABZ0biD3VlEpAvKWANQ4r6grHdY8dk4GVV35CzJlyhvuncEiybgVHgIIh7RPK4VvythLMkmrsO5muW5mc_XH-DU5ptGFN_0IuSGD3ebL35Ij-7372G7uUhz8ACYQo1M
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Transfer+Learning&rft.series=Artificial+Intelligence&rft.date=2025-01-01&rft.pub=IntechOpen&rft.isbn=9780850142488&rft.issn=2633-1403&rft_id=info:doi/10.5772%2Fintechopen.114788&rft.externalDBID=V1H&rft.externalDocID=161598
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-1403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-1403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-1403&client=summon