Faster Greedy Optimization of Resistance-based Graph Robustness

The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k new edges to G such that the resulting graph has minimal total effective resistance (i. e., is most robust). The total effective resistance...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) s. 1 - 8
Hlavní autori: Predari, Maria, Kooij, Robert, Meyerhenke, Henning
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 10.11.2022
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k new edges to G such that the resulting graph has minimal total effective resistance (i. e., is most robust). The total effective resistance and effective resistances between nodes can be computed using the pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion; yet, this takes cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain computations in established generic greedy heuristics. Moreover, we leverage existing randomized techniques to boost the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is often quite close. Our experiments show that we can now process large graphs for which the application of the state-of-the-art greedy approach was infeasible before. As far as we know, we are the first to be able to process graphs with 100K+ nodes in the order of minutes.
AbstractList The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k new edges to G such that the resulting graph has minimal total effective resistance (i. e., is most robust). The total effective resistance and effective resistances between nodes can be computed using the pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion; yet, this takes cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain computations in established generic greedy heuristics. Moreover, we leverage existing randomized techniques to boost the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is often quite close. Our experiments show that we can now process large graphs for which the application of the state-of-the-art greedy approach was infeasible before. As far as we know, we are the first to be able to process graphs with 100K+ nodes in the order of minutes.
Author Kooij, Robert
Meyerhenke, Henning
Predari, Maria
Author_xml – sequence: 1
  givenname: Maria
  surname: Predari
  fullname: Predari, Maria
  email: predarim@hu-berlin.de
  organization: Humboldt-Universität zu Berlin,Department of Computer Science,Berlin,Germany
– sequence: 2
  givenname: Robert
  surname: Kooij
  fullname: Kooij, Robert
  email: r.e.kooij@tudelft.nl
  organization: Delft University of Technology,Faculty of Electrical Engineering, Mathematics and Computer Science,Delft,The Netherlands
– sequence: 3
  givenname: Henning
  surname: Meyerhenke
  fullname: Meyerhenke, Henning
  email: meyerhenke@hu-berlin.de
  organization: Humboldt-Universität zu Berlin,Department of Computer Science,Berlin,Germany
BookMark eNo1j81Kw0AURkdQUGvewEV8gMR7ZzI_WUkotgrVQNV1mUnu4IBNQmZc1Ke3UF19m8PhfNfsfBgHYuwOoUSE-r55a1-bFymVFiUHzksEUEahOGNZrQ0qJSupFKpLlsUYHEhUmkMNV-xhZWOiOV_PRP0hb6cU9uHHpjAO-ejzLcUQkx06KpyN1B85O33m29F9xzRQjDfswtuvSNnfLtjH6vF9-VRs2vXzstkUliOmwlvhuSAtjr2VV4QOuwoq8pK8Ez33ZLpe174iMOCEdpUXovamh84bECgW7PbkDUS0m-awt_Nh9_9T_AKOHkxp
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASONAM55673.2022.10068613
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665456616
1665456612
EndPage 8
ExternalDocumentID 10068613
Genre orig-research
GrantInformation_xml – fundername: German Research Foundation
  grantid: ME 3619/4-1
  funderid: 10.13039/501100001659
GroupedDBID 6IE
6IL
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
LHSKQ
RIE
RIL
ID FETCH-LOGICAL-a211t-fa3f23e731104f6e1b1c404ef5efb3d2fe8cd79f4e080b37b4f339f8d0cf80313
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:25 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a211t-fa3f23e731104f6e1b1c404ef5efb3d2fe8cd79f4e080b37b4f339f8d0cf80313
PageCount 8
ParticipantIDs ieee_primary_10068613
PublicationCentury 2000
PublicationDate 2022-Nov.-10
PublicationDateYYYYMMDD 2022-11-10
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-10
  day: 10
PublicationDecade 2020
PublicationTitle 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
PublicationTitleAbbrev ASONAM
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib051672090
Score 1.8127128
Snippet The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms effective resistance
Electrical resistance measurement
graph robustness
Greedy algorithms
Indexes
Kirchhoff index
Laplace equations
Laplacian pseudoinverse
optimization problem
Resistance
Robustness
Social networking (online)
Title Faster Greedy Optimization of Resistance-based Graph Robustness
URI https://ieeexplore.ieee.org/document/10068613
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aRDypWNH6wQpeU7Ob7GZzkiIWL7alKvRW8jFBD3ZLuxX892bSreLBg7cQEtjJ7uybJO_NEHLNdBmi-NxQC6mjIrWMGp8jTUwHvBDSCaVjsQk5GJSTiRo1YvWohQGASD6DLjbjXb6r7AqPyoKHo6ABa9RuS1msxVqbjydPC5kxxXbJVZNH86b3NBz0HvO8kDxsBLOsu5n_q5JKBJL-_j8f4YC0fyR5yegbbA7JFsyOyG1fY56DBMkz7jMZBvd_b3SVSeWTMSwxOgxTKYKVC-P0_DUZV2a1rPEX1yYv_fvnuwfaVESgOmzUauo19xkHyYN9wheQmtQKJsDn4A13mYfSOqm8gBAIGi6N8JwrXzpmfYlZGo9Ja1bN4IQkyD7OtAnwjgcaXiqTMacguKtSuszdKWmj9dP5OunFdGN454_-M7KHa0wjQ-6ctOrFCi7Ijv2o35aLy_iqvgAmFJPt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yRT2pOPHbCl4z03wszUmGOCZu3ZgTdhtJ84IeXMfWCf73Jl2nePDgrYQm5DUfv5f093sPoRuiE-_FC4MziC3mcUawcSLQxLTHCy4tV7pMNiHTNBmP1aASq5daGAAoyWfQCI_lv3ybZ8twVeZXeBA0hBy1m4JzSlZyrfX0EXFTUqLINrquImnetp77aasnRFMyfxSktLFu4VculRJK2nv_7MQ-qv-I8qLBN9wcoA2YHqK7tg6RDqJAn7GfUd9vAO-VsjLKXTSERfAPfVUc4Mr69_TsNRrmZrkowiZXRy_th9F9B1c5EbD2R7UCO80cZSCZt4-7JsQmzjjh4AQ4wyx1kGRWKsfBu4KGScMdY8ollmQuCXEaj1Btmk_hGEWBf0y18QAfrjScVIYSq8AvWKV0IuwJqgfrJ7NV2IvJ2vDTP8qv0E5n1OtOuo_p0xnaDd8bl3y5c1Qr5ku4QFvZR_G2mF-Ww_YFCxuXNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+%28ASONAM%29&rft.atitle=Faster+Greedy+Optimization+of+Resistance-based+Graph+Robustness&rft.au=Predari%2C+Maria&rft.au=Kooij%2C+Robert&rft.au=Meyerhenke%2C+Henning&rft.date=2022-11-10&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FASONAM55673.2022.10068613&rft.externalDocID=10068613