Faster Greedy Optimization of Resistance-based Graph Robustness
The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k new edges to G such that the resulting graph has minimal total effective resistance (i. e., is most robust). The total effective resistance...
Uložené v:
| Vydané v: | 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) s. 1 - 8 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
10.11.2022
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k new edges to G such that the resulting graph has minimal total effective resistance (i. e., is most robust). The total effective resistance and effective resistances between nodes can be computed using the pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion; yet, this takes cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain computations in established generic greedy heuristics. Moreover, we leverage existing randomized techniques to boost the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is often quite close. Our experiments show that we can now process large graphs for which the application of the state-of-the-art greedy approach was infeasible before. As far as we know, we are the first to be able to process graphs with 100K+ nodes in the order of minutes. |
|---|---|
| AbstractList | The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k new edges to G such that the resulting graph has minimal total effective resistance (i. e., is most robust). The total effective resistance and effective resistances between nodes can be computed using the pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion; yet, this takes cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain computations in established generic greedy heuristics. Moreover, we leverage existing randomized techniques to boost the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is often quite close. Our experiments show that we can now process large graphs for which the application of the state-of-the-art greedy approach was infeasible before. As far as we know, we are the first to be able to process graphs with 100K+ nodes in the order of minutes. |
| Author | Kooij, Robert Meyerhenke, Henning Predari, Maria |
| Author_xml | – sequence: 1 givenname: Maria surname: Predari fullname: Predari, Maria email: predarim@hu-berlin.de organization: Humboldt-Universität zu Berlin,Department of Computer Science,Berlin,Germany – sequence: 2 givenname: Robert surname: Kooij fullname: Kooij, Robert email: r.e.kooij@tudelft.nl organization: Delft University of Technology,Faculty of Electrical Engineering, Mathematics and Computer Science,Delft,The Netherlands – sequence: 3 givenname: Henning surname: Meyerhenke fullname: Meyerhenke, Henning email: meyerhenke@hu-berlin.de organization: Humboldt-Universität zu Berlin,Department of Computer Science,Berlin,Germany |
| BookMark | eNo1j81Kw0AURkdQUGvewEV8gMR7ZzI_WUkotgrVQNV1mUnu4IBNQmZc1Ke3UF19m8PhfNfsfBgHYuwOoUSE-r55a1-bFymVFiUHzksEUEahOGNZrQ0qJSupFKpLlsUYHEhUmkMNV-xhZWOiOV_PRP0hb6cU9uHHpjAO-ejzLcUQkx06KpyN1B85O33m29F9xzRQjDfswtuvSNnfLtjH6vF9-VRs2vXzstkUliOmwlvhuSAtjr2VV4QOuwoq8pK8Ez33ZLpe174iMOCEdpUXovamh84bECgW7PbkDUS0m-awt_Nh9_9T_AKOHkxp |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ASONAM55673.2022.10068613 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781665456616 1665456612 |
| EndPage | 8 |
| ExternalDocumentID | 10068613 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: German Research Foundation grantid: ME 3619/4-1 funderid: 10.13039/501100001659 |
| GroupedDBID | 6IE 6IL ACM ALMA_UNASSIGNED_HOLDINGS APO CBEJK LHSKQ RIE RIL |
| ID | FETCH-LOGICAL-a211t-fa3f23e731104f6e1b1c404ef5efb3d2fe8cd79f4e080b37b4f339f8d0cf80313 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jun 26 19:25:25 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a211t-fa3f23e731104f6e1b1c404ef5efb3d2fe8cd79f4e080b37b4f339f8d0cf80313 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10068613 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov.-10 |
| PublicationDateYYYYMMDD | 2022-11-10 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) |
| PublicationTitleAbbrev | ASONAM |
| PublicationYear | 2022 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssib051672090 |
| Score | 1.8127128 |
| Snippet | The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G . We consider the optimization problem of adding k... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | effective resistance Electrical resistance measurement graph robustness Greedy algorithms Indexes Kirchhoff index Laplace equations Laplacian pseudoinverse optimization problem Resistance Robustness Social networking (online) |
| Title | Faster Greedy Optimization of Resistance-based Graph Robustness |
| URI | https://ieeexplore.ieee.org/document/10068613 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRDypWPHNCl5TN49NsicpYvGgbakPepM8JujBbmm3gv_eJN0qHjx4CyEDmUwmM0nmm0HowmrhuC5MKmiCOXCGjSg0tmC9o7qUZQLSPt_Jfl-Nx-WwAasnLAwApOAz6MRm-st3lV3Ep7Kg4RHQEGvUrksplmCt1eYpiJA0L_NNdN7k0bzsPgz63fuiEJKFiyClnRX9r0oqyZD0tv85hR3U_oHkZcNvY7OL1mCyh656OuY5yGLwjPvMBkH93xtcZVb5bATz6B0GUhyNlQvj9PQ1G1VmMa_jEddGT72bx-tb3FREwDpc1GrsNfOUgWSBP-4FEEMszzn4ArxhjnpQ1snScwiOoGHScM9Y6ZXLrVcxS-M-ak2qCRygzDmviFRCF5JwYowWylEbRMOdKI0ih6gduX-ZLpNevKwYP_qj_xhtxTXGKULuBLXq2QJO0Yb9qN_ms7Mkqi-g45UZ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iop5UrPh2Ba-pu3nvSYpYKrbbUqv0VvJED3ZLuxX89yZpq3jw4C2EJGQyycwkmW8GgGstmSGSqpjQBBJLMFSMSqitdgbJnOcRSPvS5kUhhsO8twSrRyyMtTY6n9l6KMa_fFPqeXgq8yc8ABpCjtoNSghKF3Ct1fahGeMozdMtcLWMpHnTeOoWjQ6ljGN_FUSovhrhVy6VqEqau_-cxB6o_YDykt63utkHa3Z8AG6bMkQ6SIL7jPlMul4AvC-RlUnpkr6dBfvQd4VBXRnfTk5ek36p5rMqCLkaeG7eD-5acJkTAUp_Vaugk9ghbDn29BHHbKYyTVJiHbVOYYOcFdrw3BHrTUGFuSIO49wJk2onQpzGQ7A-Lsf2CCTGOJFxwSTlGcmUkkwYpD1ziGG5EtkxqAXqR5NF2IvRivCTP-ovwXZr0GmP2g_F4ynYCesNo7_cGVivpnN7Djb1R_U2m15Etn0BlTCYYA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+%28ASONAM%29&rft.atitle=Faster+Greedy+Optimization+of+Resistance-based+Graph+Robustness&rft.au=Predari%2C+Maria&rft.au=Kooij%2C+Robert&rft.au=Meyerhenke%2C+Henning&rft.date=2022-11-10&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FASONAM55673.2022.10068613&rft.externalDocID=10068613 |