NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh
Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous input...
Uloženo v:
| Vydáno v: | Journal of Groundwater Science and Engineering Ročník 8; číslo 2; s. 118 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Shijiazhuang
2020
|
| ISSN: | 2305-7068 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs (NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error (MSE), coefficient of determination (R2), and Nash-Sutcliffe coefficient of efficiency (NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period. |
|---|---|
| AbstractList | Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater level is necessary for jointly planning the uses of groundwater resources. In this study, a new nonlinear autoregressive with exogenous inputs (NARX) network has been applied to simulate monthly groundwater levels in a well of Sylhet Sadar at a local scale. The Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms were used to train the NARX network, and the results were compared to determine the best architecture for predicting monthly groundwater levels over time. The comparison between LM and BR showed that NARX-BR has advantages over predicting monthly levels based on the Mean Squared Error (MSE), coefficient of determination (R2), and Nash-Sutcliffe coefficient of efficiency (NSE). The results show that BR is the most accurate method for predicting groundwater levels with an error of ± 0.35 m. This method is applied to the management of irrigation water source, which provides important information for the prediction of local groundwater fluctuation at local level during a short period. |
| Author | Ayesha Ferdous Mita Basak, Shilpy Rani Meher Uddin Himel Abdullah Al Jami Hasan, Khairul |
| Author_xml | – sequence: 1 fullname: Abdullah Al Jami – sequence: 2 fullname: Meher Uddin Himel – sequence: 3 givenname: Khairul surname: Hasan fullname: Hasan, Khairul – sequence: 4 givenname: Shilpy surname: Basak middlename: Rani fullname: Basak, Shilpy Rani – sequence: 5 fullname: Ayesha Ferdous Mita |
| BookMark | eNo9j11LwzAYhXMxwan7DwHxztY3yZqkl3P4BUPBKXg3suTt2q0mM00d-_cWFK8eOBfnOeeMjHzwSMgVg5yVUqibbW79rsm5gCJTIHXOgUMOPAcQIzL-z0_JpOu2AMB1oTjXY9I8z14_qMc-mnZAOoS4o2a_j8HYmlYh0lQj_Qw-1e2R7iO6xqYmeBoquomh9-5gEkba4je2HW08XR7bGhNdGmfiNb01ftMah119QU4q03Y4-eM5eb-_e5s_ZouXh6f5bJEZDjJlem2lGxZaMxWVdcCmqHRhlTRyDWKqAKQt1NoqxhRaUwlnJXOqkk441FiKc3L52zt8-OqxS6tt6KMflCvBeak1K0GKHzDSXr0 |
| ContentType | Journal Article |
| Copyright | 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2020. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | ABUWG AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.19637/j.cnki.2305-7068.2020.02.003 |
| DatabaseName | ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| GroupedDBID | -01 -0A 5VR 92M 9D9 9DA ABUWG AFKRA AFUIB ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO GROUPED_DOAJ HCIFZ OZF PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS RT1 T8Q U1F U5A |
| ID | FETCH-LOGICAL-a206t-8bc6d000ca43fcd014e785c76a6b0347006c57bc7117ecaf3dc61d7f6d3de8e93 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000541624800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2305-7068 |
| IngestDate | Fri Jul 25 09:05:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a206t-8bc6d000ca43fcd014e785c76a6b0347006c57bc7117ecaf3dc61d7f6d3de8e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/3229881906?pq-origsite=%requestingapplication% |
| PQID | 3229881906 |
| PQPubID | 7241714 |
| ParticipantIDs | proquest_journals_3229881906 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Shijiazhuang |
| PublicationPlace_xml | – name: Shijiazhuang |
| PublicationTitle | Journal of Groundwater Science and Engineering |
| PublicationYear | 2020 |
| SSID | ssj0002857228 |
| Score | 2.1482875 |
| Snippet | Groundwater is important for managing the water supply in agricultural countries like Bangladesh. Therefore, the ability to predict the changes of groundwater... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 118 |
| Title | NARX neural network approach for the monthly prediction of groundwater levels in Sylhet Sadar, Bangladesh |
| URI | https://www.proquest.com/docview/3229881906 |
| Volume | 8 |
| WOSCitedRecordID | wos000541624800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 2305-7068 databaseCode: DOA dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: false ssIdentifier: ssj0002857228 providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database issn: 2305-7068 databaseCode: PCBAR dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/eaasdb omitProxy: false ssIdentifier: ssj0002857228 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 2305-7068 databaseCode: BENPR dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: false ssIdentifier: ssj0002857228 providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database issn: 2305-7068 databaseCode: PIMPY dateStart: 20130101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://search.proquest.com/publiccontent omitProxy: false ssIdentifier: ssj0002857228 providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-6iXjxAxU_5shBb2ZrkzZJT7LJRA-WsSnM00iTlE1HN9uq7L83abt5EDx5flDKy8v7ynu_HwCXMYuZRYVBhEQ-8mLmosjk_YgLzmSAHUFFSTbBwpCPRkG_Wo_OqrHKlU8sHHWJ9mznto0Tbqu5tB3ztjHDgNtgRm8W78hySNm31opQYxPULfAWr4F6_-Gx_7LuuWDuM1zQrZrE20fMoXwbXBUre5Sw9mtLJm_T1lpmqkfslIie5JerLuLP3d7__vk-2K3yUNgpDecAbOjkEEzDzmAELcSlESXlgDhcoY5Dk95Cky5C84V8MlvCRWofeezBwnkM7XpIor5M6prCmZ1EyuA0gcPlbKJzOBRKpNewKyxliNLZ5Ag83_Webu9RxcWABHZojngkqTIqlMIjsVSmsNKM-5JRQSOHeMxcXumzSDLXZVqKmChJXcViqojSXAfkGNSSeaJPALQI9ZRiE52l8kRAeeDhGJsK39Uqiig-BY2VHsfVhcrGP2o7-1t8DnbssZVdkgao5emHvgBb8jOfZmkT1Lu9sD9oFqV3s7KPb_1cyTw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED5Bi4CFhwDxxgMwYUicxHYGhvISCKiqAlK34tiOWqhSSAKof4rfiN2kZUBiY2A-KVJyl7vvzufvA9iNWcwsKwz2vCjAfsxcHBncj7ngTIbEEVQUYhOsXuetVtiYgM_RXRi7VjnKicNErfrSzsiPTOCF3JYvWm5QXuvBh-nPsuOrM-PMPUIuzu9PL3EpIYAFcWiOeSSpMn-9FL4XS2X6Ac14IBkVNHI8n5mYkwGLJHNdpqWIPSWpq1hMlac015Zpiey_vGKrUmVPc0vJjkmochoGfgWqjdOTWnM81SE8YGQo6GqgfYCZQ_k07A0vBVKPHT0dyuS5ezi2mf6UOAVnqPejGAwr3MX8f_s2CzBXYmlUK4J_ESZ0sgTdeq3ZQpam05iSYskdjZjTkYHoyEBeZJ6Qd3oD9JLagyobnKgfI3vFJVEfBn6nqGe3qTLUTdDdoNfROboTSqQH6ERY2ROls84yPPzJC69AJeknehWQZdmnlBiEIZUvQspDn8RER8TVKoooWYPNkafaZVLI2t9uWv_dvAMzl_e3N-2bq_r1BszaICmmPptQydM3vQVT8j3vZul2GX8IHv_a018HrRki |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NARX+neural+network+approach+for+the+monthly+prediction+of+groundwater+levels+in+Sylhet+Sadar%2C+Bangladesh&rft.jtitle=Journal+of+Groundwater+Science+and+Engineering&rft.au=Abdullah+Al+Jami&rft.au=Meher+Uddin+Himel&rft.au=Hasan%2C+Khairul&rft.au=Basak%2C+Shilpy+Rani&rft.date=2020&rft.issn=2305-7068&rft.volume=8&rft.issue=2&rft.spage=118&rft_id=info:doi/10.19637%2Fj.cnki.2305-7068.2020.02.003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-7068&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-7068&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-7068&client=summon |