Symbolic Extensions of Amenable Group Actions and the Comparison Property

In topological dynamics, the Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted from the case of

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Downarowicz, Tomasz, Zhang, Guohua
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2023
AMS, American Mathematical Society
Ausgabe:1
Schriftenreihe:Memoirs of the American Mathematical Society
Schlagworte:
ISBN:9781470455873, 1470455870
ISSN:0065-9266, 1947-6221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In topological dynamics, the Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted from the case of
AbstractList In topological dynamics, the Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted from the case of
View the abstract.
Author Downarowicz, Tomasz
Zhang, Guohua
Author_xml – sequence: 1
  fullname: Downarowicz, Tomasz
– sequence: 2
  fullname: Zhang, Guohua
BackLink https://cir.nii.ac.jp/crid/1130295646841886273$$DView record in CiNii
BookMark eNpVkU9r3DAQxZU0CdlN9tBvYGgO7cGNRqM_1nG7bNJAoIWWXoVsj4mJLW0tJ22-fezsQullhuH9mAfvLdlJiIEYew_8M3DLr3vq4zWg5UdsZU0B0nBpUKA6Zguw0uRaCHj3T1OqMHjCFpxrlVuh9SlbCi6Qg9BSn7El4EQooQWes1VKbcmng1slzILd_Xjpy9i1Vbb9O1JIbQwpi0227in4sqPsdohPu2xdjW-KD3U2PlC2if3OD22KIfs-xB0N48slO218l2h12Bfs18325-Zrfv_t9m6zvs-94FrYvJZkCJT1WCFxL31lG4C6KKXFsqqtQGllbcqKCk-NBdJEILyuhdVeNYAX7NP-sU-P9Cc9xG5M7rmjMsbH5P5LbGI_7tndEH8_URrdG1ZRGAffue2XDXLEKY8ZvdqjoW1d1c4TALmwakqxkFAUWhicsA8H9z65gydwNzfn5ubc3By-AqOrf2g
CitedBy_id crossref_primary_10_1093_imrn_rnaf113
crossref_primary_10_1017_etds_2024_21
crossref_primary_10_1515_crelle_2023_0012
crossref_primary_10_1088_1361_6544_acc71c
crossref_primary_10_1093_imrn_rnaf016
crossref_primary_10_1215_00127094_2022_0100
ContentType eBook
Book
Copyright Copyright 2023 American Mathematical Society
Copyright_xml – notice: Copyright 2023 American Mathematical Society
DBID RYH
DEWEY 515.39
DOI 10.1090/memo/1390
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470473235
1470473232
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470473235
EBC30330525
BD00775175
10_1090_memo_1390
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADVEM
AEPJP
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a20629-d4e7e159a3c3e0a4ac9f11d8b493bcd923494d7bce8aef91e6ee12a6d296a5f13
ISBN 9781470455873
1470455870
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060360&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Mon Jun 16 09:15:03 EDT 2025
Wed Dec 10 11:12:57 EST 2025
Fri Jun 27 00:08:32 EDT 2025
Thu Aug 14 15:25:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords symbolic extension entropy
comparison property
subexponential group
superenvelope
symbolic extension
encodable tiling system
entropy structure
Følner system of quasitilings
residually finite group
Amenable group action
tiling system
LCCN 2023012646
LCCallNum_Ident QA613.7 .D696 2023
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a20629-d4e7e159a3c3e0a4ac9f11d8b493bcd923494d7bce8aef91e6ee12a6d296a5f13
Notes January 2023, volume 281, number 1390 (fifth of 6 numbers)
Includes bibliographical references (p. 93-95)
OCLC 1358752623
PQID EBC30330525
PageCount 108
ParticipantIDs askewsholts_vlebooks_9781470473235
proquest_ebookcentral_EBC30330525
nii_cinii_1130295646841886273
ams_ebooks_10_1090_memo_1390
PublicationCentury 2000
PublicationDate 2023.
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023.
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2023
Publisher American Mathematical Society
AMS, American Mathematical Society
Publisher_xml – name: American Mathematical Society
– name: AMS, American Mathematical Society
SSID ssib052609527
ssj0002865747
ssj0008047
Score 2.718467
Snippet In topological dynamics, the Of course, the statement is preceded by the presentation of the concepts of an entropy structure and its superenvelopes, adapted...
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Group actions (Mathematics)
Symbolic dynamics
Tiling (Mathematics)
Topological entropy
TableOfContents Introduction -- Preliminaries on actions of countable amenable groups -- Entropy structure and the easy direction of the main theorem -- Quasitilings and tiling systems -- Quasi-symbolic extensions—the hard direction of the main theorem -- The comparison property -- Encodable tiling systems -- Appendix A
Cover -- Title page -- Chapter 1. Introduction -- 1.1. Motivation -- 1.2. Subject of the paper -- 1.3. Organization of the paper -- Acknowledgment -- Chapter 2. Preliminaries on actions of countable amenable groups -- 2.1. Group actions, subshifts, symbolic extensions, block codes -- 2.2. An -modification, ( , )-invariance, Følner sequence, amenability -- 2.3. The Choquet simplex of invariant probability measures -- 2.4. The ergodic theorem -- 2.5. Entropy -- 2.6. Zero-dimensional systems -- Chapter 3. Entropy structure and the easy direction of the main theorem -- 3.1. Structures -- 3.2. Superenvelopes -- 3.3. Definition of the entropy structure -- 3.4. Symbolic extensions-the easy direction -- Chapter 4. Quasitilings and tiling systems -- 4.1. Terminology and facts not requiring amenability -- 4.2. Terminology and facts requiring amenability -- 4.3. Tiled entropy -- Chapter 5. Quasi-symbolic extensions-the hard direction of the main theorem -- Chapter 6. The comparison property -- 6.1. Definition of the comparison property -- 6.2. Banach density interpretation of the comparison property -- 6.3. Comparison property of subexponential groups -- Chapter 7. Encodable tiling systems -- 7.1. Encodable systems of quasitilings -- 7.2. Encodability of tiling systems versus the comparison property -- 7.3. Symbolic extensions for actions of selected groups -- Appendix A -- Bibliography -- Back Cover
Title Symbolic Extensions of Amenable Group Actions and the Comparison Property
URI https://www.ams.org/memo/1390/
https://cir.nii.ac.jp/crid/1130295646841886273
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30330525
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470473235
Volume 281
WOSCitedRecordID wos0000060360&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZo4UBPPEX3JYO4raKNY9eOr7vbfQhp4VDQ3iLHdkQETVZNu1r49YydxFm1B8SBi9VEbUadz-08PPMNQh_BiFJREBqJGdcRy62JwCqyiIK1BAc54cIwP2xC3Nykt7fyS8f91_hxAqKq0ocHefdfoYZ7ALZrnf0HuMND4Qa8BtBhBdhh3fKIw2XX1PFrmTuW32Of2G76Cje1tG1_lG_gOG4bGZpQOamHQYR3LjG_Wock-zlE6ArC9FL7LPPClRL93sk0X27q7xv1OHuQ0K3swXAsFEhiHQlJHVhIQqhJmADvb5a2g0d2_nhj6SoVl3ZZu1QAbUeAbjFZn557wj3YBCM0EhxC5aeX889fP4WcmOuShfDG99910gItVy-9Z4eS8YmTduJkeZbcZoImqvkBpgHMxhquRlVZ7lhY7zYsXqCxayV5iZ7Y6hWaDF--eY2ue7TwgBauC9yjhT1auEMLA1oYPo0HtHCP1hv07WK-OLuKurEWkUpinsjIMCssuJGKampjxZSWBSEmzZmkuTbgcjPJjMi1TZUtJLHcWpIobhLJ1Qx-WG_RuKor-w7hOFciMTqWlGsGsaE0RVrEsZGGEpoqNUUHoJnMH7w3WVtwEGdOcZlT3BR9eKSy7P5n98Ze44ImdDZFh6DJTJduJe6gG2JqxlNGUgiHBZ2i972OW0FdWXE2Pz0DB4m6SYl7f3nGPno-7M4DNF6vNvYQPdP367JZHXX75A_tZFKW
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Symbolic+extensions+of+amenable+group+actions+and+the+comparison+property&rft.au=Downarowicz%2C+Tomasz&rft.au=Zhang%2C+Guohua&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470455873&rft_id=info:doi/10.1090%2Fmemo%2F1390&rft.externalDocID=BD00775175
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470473235.jpg