Embeddings of Decomposition Spaces

Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavný autor: Voigtlaender, Felix
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2023
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:9781470459901, 1470459906
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings. These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of We also prove a The resulting embedding theory is illustrated by applications to
Bibliografia:Includes bibliographical references (p. 253-255)
July 2023, volume 287, number 1426 (fourth of 6 numbers)
ISBN:9781470459901
1470459906
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1426