Embeddings of Decomposition Spaces

Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Voigtlaender, Felix
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2023
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9781470459901, 1470459906
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings. These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of We also prove a The resulting embedding theory is illustrated by applications to
AbstractList View the abstract.
Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings. These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of We also prove a The resulting embedding theory is illustrated by applications to
Author Voigtlaender, Felix
Author_xml – sequence: 1
  fullname: Voigtlaender, Felix
BackLink https://cir.nii.ac.jp/crid/1130860520626393389$$DView record in CiNii
BookMark eNpVkctOwzAQRQ20iLZ0wR9UwAIWofbY8WMJpTykSixAbC3HdiBqEpc6wO_j0kqIzYxGczSPe4eo14bWI3RC8BXBCk8b34QpYcD30FgJSZjATOQM8D4aEMVExgHIwV8vVwqTHhpgzPNMAed9NAQMFFOSikM0JFQBTfOUPELjGKsC5yA5o5gP0Om8KbxzVfsWJ6Gc3HobmlWIVVeFdvK8MtbHY9QvTR39eJdH6PVu_jJ7yBZP94-z60VmAHOgmRMUlHXcO-Ics6YsSyusxMDBKgvMWGN5CYVlUhhPpGNK-IIpV5gyB5XTEbrcDjZx6b_je6i7qL9qX4SwjPqfFIm92LKrdfj49LHTv5j1bbc2tZ7fzNJ7gihCE3q-Rduq0rbaREIoljzJkA7nVFEqVcLOdtubqHc7CdYbS_TGEr2xhP4AJqpxYA
ContentType eBook
Book
Copyright Copyright 2023 American Mathematical Society
Copyright_xml – notice: Copyright 2023 American Mathematical Society
DBID RYH
DEWEY 515.353
DOI 10.1090/memo/1426
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISBN 9781470475420
1470475421
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470475420
EBC30671913
BD03785969
10_1090_memo_1426
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a20623-d7329cd6ed1dd4cafffc7c80262c9c24acac6f2bc487ae18d497eb49dbaf52953
ISBN 9781470459901
1470459906
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000061318&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 02:35:25 EST 2024
Wed Dec 10 11:26:25 EST 2025
Thu Jun 26 23:49:29 EDT 2025
Thu Aug 14 15:25:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords embeddings
Coorbit spaces
Function spaces
<inline-formula content-type="math/mathml"> α \alpha </inline-formula>-modulation spaces
smoothness spaces
decomposition spaces
frequency coverings
Besov spaces
LCCN 2023031266
LCCallNum_Ident QA402.2 .V654 2023
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a20623-d7329cd6ed1dd4cafffc7c80262c9c24acac6f2bc487ae18d497eb49dbaf52953
Notes Includes bibliographical references (p. 253-255)
July 2023, volume 287, number 1426 (fourth of 6 numbers)
OCLC 1392342698
PQID EBC30671913
PageCount 268
ParticipantIDs askewsholts_vlebooks_9781470475420
proquest_ebookcentral_EBC30671913
nii_cinii_1130860520626393389
ams_ebooks_10_1090_memo_1426
PublicationCentury 2000
PublicationDate 2023.
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023.
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2023
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssib052864306
ssj0002915007
ssj0008047
Score 2.8312814
Snippet Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A...
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Decomposition (Mathematics)
Functional analysis-Research
TableOfContents Introduction -- Different classes of coverings and their relations -- (Fourier-side) decomposition spaces -- Nested sequence spaces -- Sufficient conditions for embeddings -- Necessary conditions for embeddings -- An overview of the derived embedding results -- Decomposition spaces as spaces of tempered distributions -- Applications
Cover -- Title page -- Chapter 1. Introduction -- 1.1. Motivation and related work -- 1.2. Notation -- A comment on the writing style and the length of the paper -- 1.3. Overview of new results -- 1.4. Structure of the paper -- Acknowledgments -- Chapter 2. Different classes of coverings and their relations -- 2.1. Admissible and (semi/almost)-structured coverings -- 2.2. Relations between coverings -- Chapter 3. (Fourier-side) decomposition spaces -- 3.1. Convolution relations for ^{ }, ∈(0,1) -- 3.2. Definition of decomposition spaces -- 3.3. Well-definedness of decomposition spaces -- 3.4. Completeness of decomposition spaces -- Chapter 4. Nested sequence spaces -- Chapter 5. Sufficient conditions for embeddings -- Chapter 6. Necessary conditions for embeddings -- 6.1. Elementary necessary conditions -- 6.2. Coincidence of decomposition spaces -- 6.3. Improved necessary conditions -- 6.4. Further necessary conditions in case of ₁= ₂ -- 6.5. Complete characterizations for relatively moderate coverings -- Chapter 7. An overview of the derived embedding results -- 7.1. A collection of readily applicable embedding results -- 7.2. Embeddings between decomposition spaces: A user's guide -- Chapter 8. Decomposition spaces as spaces of tempered distributions -- Chapter 9. Applications -- 9.1. Embeddings of -modulation spaces -- 9.2. Embeddings between -modulation spaces and Besov spaces -- 9.3. Embeddings between homogeneous and inhomogeneous Besov spaces -- Bibliography -- Back Cover
Title Embeddings of Decomposition Spaces
URI https://www.ams.org/memo/1426/
https://cir.nii.ac.jp/crid/1130860520626393389
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30671913
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470475420
Volume 287
WOSCitedRecordID wos0000061318&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdo4YE-MT5EYZvKxBuK5tipHb9uFCYNDR5GtbfInyham6ClTP3zuXOTtBQkxAMvVmJFPuV3ln3nO_-OkLc0eO4szRNh5TTJvBGJ4iEk1jDnBA9uQzw__ySvrvKbG_WlrUDYxHICsqry9Vp9_6-qhj5QNl6d_Qd194NCBzyD0qEFtUO7ZxH3r-3B-tJ4F0NJaAE6j9nibUrWO1g37DZbcF6X31YLHavIRevVL8r1rv_P-J7_vw3s9DSvSCNS9zwivbOYZhLsN4yD_XHppApzDZd-Wcc7-GyPoDpueWfvKZf5VAk1IAMpwNl9-HH2-etlf6rFFBiYVMYbdK000RFrddI7fidFT1HaKcqKPLfNiIx0cwuLOyz8K3gbVGX52x4ZN_7rJ2SIl0EOyANfPSWjHfLGZ-Rki_ekDpNf8J5s8H5O5h9m1-cXSVtxItGMgiGYOMmZsk54lzqXWR1CsBKmKxPMKssybbUVgRkLfp72ae4yJb3JlDM6YMiUvyDDqq78SzIx2qggQzrVCmnkjDLcSI2ZnMaznNoxOYRfLmJMvCk2uQC0QEQKRGRMTnawKO4X7YcdlFi5mI7JEUBU2BLbFMyRXGBeEzIMKQ6m6Ji86cDbCGozfovZ2Tn6iuCs81d_GeM1ebyddodkuLr74Y_II3u_Kpu743YC_ASqXS59
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Embeddings+of+decomposition+spaces&rft.au=Voigtlaender%2C+Felix&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470459901&rft_id=info:doi/10.1090%2Fmemo%2F1426&rft.externalDocID=BD03785969
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470475420.jpg