Embeddings of Decomposition Spaces
Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell...
Uloženo v:
| Hlavní autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 9781470459901, 1470459906 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an
embedding between the two?
A decomposition space
We establish readily verifiable criteria which ensure the
existence of a continuous inclusion (“an embedding”)
In a nutshell, in order to apply the embedding results presented in this
article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved
coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings.
These
sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of
We also prove a
The resulting embedding theory is illustrated by applications
to |
|---|---|
| AbstractList | View the abstract. Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an embedding between the two? A decomposition space We establish readily verifiable criteria which ensure the existence of a continuous inclusion (“an embedding”) In a nutshell, in order to apply the embedding results presented in this article, no knowledge of Fourier analysis is required; instead, one only has to study the geometric properties of the involved coverings, so that one can decide the finiteness of certain sequence space norms defined in terms of the coverings. These sufficient criteria are quite sharp: For almost arbitrary coverings and certain ranges of We also prove a The resulting embedding theory is illustrated by applications to |
| Author | Voigtlaender, Felix |
| Author_xml | – sequence: 1 fullname: Voigtlaender, Felix |
| BackLink | https://cir.nii.ac.jp/crid/1130860520626393389$$DView record in CiNii |
| BookMark | eNpVkctOwzAQRQ20iLZ0wR9UwAIWofbY8WMJpTykSixAbC3HdiBqEpc6wO_j0kqIzYxGczSPe4eo14bWI3RC8BXBCk8b34QpYcD30FgJSZjATOQM8D4aEMVExgHIwV8vVwqTHhpgzPNMAed9NAQMFFOSikM0JFQBTfOUPELjGKsC5yA5o5gP0Om8KbxzVfsWJ6Gc3HobmlWIVVeFdvK8MtbHY9QvTR39eJdH6PVu_jJ7yBZP94-z60VmAHOgmRMUlHXcO-Ics6YsSyusxMDBKgvMWGN5CYVlUhhPpGNK-IIpV5gyB5XTEbrcDjZx6b_je6i7qL9qX4SwjPqfFIm92LKrdfj49LHTv5j1bbc2tZ7fzNJ7gihCE3q-Rduq0rbaREIoljzJkA7nVFEqVcLOdtubqHc7CdYbS_TGEr2xhP4AJqpxYA |
| ContentType | eBook Book |
| Copyright | Copyright 2023 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2023 American Mathematical Society |
| DBID | RYH |
| DEWEY | 515.353 |
| DOI | 10.1090/memo/1426 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISBN | 9781470475420 1470475421 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470475420 EBC30671913 BD03785969 10_1090_memo_1426 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ABARN ABQPQ ADVEM AERYV AFOJC AHWGJ AJFER BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a20623-d7329cd6ed1dd4cafffc7c80262c9c24acac6f2bc487ae18d497eb49dbaf52953 |
| ISBN | 9781470459901 1470459906 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000061318&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 02:35:25 EST 2024 Wed Dec 10 11:26:25 EST 2025 Thu Jun 26 23:49:29 EDT 2025 Thu Aug 14 15:25:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | embeddings Coorbit spaces Function spaces <inline-formula content-type="math/mathml"> α \alpha </inline-formula>-modulation spaces smoothness spaces decomposition spaces frequency coverings Besov spaces |
| LCCN | 2023031266 |
| LCCallNum_Ident | QA402.2 .V654 2023 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a20623-d7329cd6ed1dd4cafffc7c80262c9c24acac6f2bc487ae18d497eb49dbaf52953 |
| Notes | Includes bibliographical references (p. 253-255) July 2023, volume 287, number 1426 (fourth of 6 numbers) |
| OCLC | 1392342698 |
| PQID | EBC30671913 |
| PageCount | 268 |
| ParticipantIDs | askewsholts_vlebooks_9781470475420 proquest_ebookcentral_EBC30671913 nii_cinii_1130860520626393389 ams_ebooks_10_1090_memo_1426 |
| PublicationCentury | 2000 |
| PublicationDate | 2023. |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023. |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2023 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssib052864306 ssj0002915007 ssj0008047 |
| Score | 2.8312814 |
| Snippet | Many smoothness spaces in harmonic analysis are decomposition spaces. In this paper we ask: Given two such spaces, is there an
embedding between the two?
A... View the abstract. |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Decomposition (Mathematics) Functional analysis-Research |
| TableOfContents | Introduction
--
Different classes of coverings and their relations
--
(Fourier-side) decomposition spaces
--
Nested sequence spaces
--
Sufficient conditions for embeddings
--
Necessary conditions for embeddings
--
An overview of the derived embedding results
--
Decomposition spaces as spaces of tempered distributions
--
Applications Cover -- Title page -- Chapter 1. Introduction -- 1.1. Motivation and related work -- 1.2. Notation -- A comment on the writing style and the length of the paper -- 1.3. Overview of new results -- 1.4. Structure of the paper -- Acknowledgments -- Chapter 2. Different classes of coverings and their relations -- 2.1. Admissible and (semi/almost)-structured coverings -- 2.2. Relations between coverings -- Chapter 3. (Fourier-side) decomposition spaces -- 3.1. Convolution relations for ^{ }, ∈(0,1) -- 3.2. Definition of decomposition spaces -- 3.3. Well-definedness of decomposition spaces -- 3.4. Completeness of decomposition spaces -- Chapter 4. Nested sequence spaces -- Chapter 5. Sufficient conditions for embeddings -- Chapter 6. Necessary conditions for embeddings -- 6.1. Elementary necessary conditions -- 6.2. Coincidence of decomposition spaces -- 6.3. Improved necessary conditions -- 6.4. Further necessary conditions in case of ₁= ₂ -- 6.5. Complete characterizations for relatively moderate coverings -- Chapter 7. An overview of the derived embedding results -- 7.1. A collection of readily applicable embedding results -- 7.2. Embeddings between decomposition spaces: A user's guide -- Chapter 8. Decomposition spaces as spaces of tempered distributions -- Chapter 9. Applications -- 9.1. Embeddings of -modulation spaces -- 9.2. Embeddings between -modulation spaces and Besov spaces -- 9.3. Embeddings between homogeneous and inhomogeneous Besov spaces -- Bibliography -- Back Cover |
| Title | Embeddings of Decomposition Spaces |
| URI | https://www.ams.org/memo/1426/ https://cir.nii.ac.jp/crid/1130860520626393389 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30671913 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470475420 |
| Volume | 287 |
| WOSCitedRecordID | wos0000061318&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdo4YE-MT5EYZvKxBuK5tipHb9uFCYNDR5GtbfInyham6ClTP3zuXOTtBQkxAMvVmJFPuV3ln3nO_-OkLc0eO4szRNh5TTJvBGJ4iEk1jDnBA9uQzw__ySvrvKbG_WlrUDYxHICsqry9Vp9_6-qhj5QNl6d_Qd194NCBzyD0qEFtUO7ZxH3r-3B-tJ4F0NJaAE6j9nibUrWO1g37DZbcF6X31YLHavIRevVL8r1rv_P-J7_vw3s9DSvSCNS9zwivbOYZhLsN4yD_XHppApzDZd-Wcc7-GyPoDpueWfvKZf5VAk1IAMpwNl9-HH2-etlf6rFFBiYVMYbdK000RFrddI7fidFT1HaKcqKPLfNiIx0cwuLOyz8K3gbVGX52x4ZN_7rJ2SIl0EOyANfPSWjHfLGZ-Rki_ekDpNf8J5s8H5O5h9m1-cXSVtxItGMgiGYOMmZsk54lzqXWR1CsBKmKxPMKssybbUVgRkLfp72ae4yJb3JlDM6YMiUvyDDqq78SzIx2qggQzrVCmnkjDLcSI2ZnMaznNoxOYRfLmJMvCk2uQC0QEQKRGRMTnawKO4X7YcdlFi5mI7JEUBU2BLbFMyRXGBeEzIMKQ6m6Ji86cDbCGozfovZ2Tn6iuCs81d_GeM1ebyddodkuLr74Y_II3u_Kpu743YC_ASqXS59 |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Embeddings+of+decomposition+spaces&rft.au=Voigtlaender%2C+Felix&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470459901&rft_id=info:doi/10.1090%2Fmemo%2F1426&rft.externalDocID=BD03785969 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470475420.jpg |

