Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models

We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Casalaina-Martin, Sebastian, Grushevsky, Samuel, Hulek, Klaus, Laza, Radu
Format: E-Book Buch
Sprache:Englisch
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2023
Ausgabe:1
Schriftenreihe:Memoirs of the American Mathematical Society
Schlagworte:
ISBN:9781470460204, 1470460203
ISSN:0065-9266, 1947-6221
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix.
AbstractList View the abstract.
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix.
Author Grushevsky, Samuel
Hulek, Klaus
Casalaina-Martin, Sebastian
Laza, Radu
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Casalaina-Martin
  fullname: Casalaina-Martin, Sebastian
– sequence: 2
  givenname: Samuel
  surname: Grushevsky
  fullname: Grushevsky, Samuel
– sequence: 3
  givenname: Klaus
  surname: Hulek
  fullname: Hulek, Klaus
– sequence: 4
  givenname: Radu
  surname: Laza
  fullname: Laza, Radu
BackLink https://cir.nii.ac.jp/crid/1130577121818944658$$DView record in CiNii
BookMark eNpVkc1P3DAQxV0KqLvbPfAfRGoP9BAYj7-PbUQBiaoH6NmyY6cJJDFdZ_vx33fDrlT1MiPN_PSe9N6SHI9pjIScUbigYOByiEO6pMyIV2RtlKZcAVdMUH1EFtRwVUpE-vrfTwICPyYLAClKg1KekCUCMqBsdzolS8oUMqPB4BuyzvkRAFBLTrlYkJsqtWlIffr-p0hNMbWx-JLCtu-K-2dXx_lWbX1XFw_tJsYm9SEXbgzF7ZSL-yGlqZ352Oe35KRxfY7rw16Rb5-vHqqb8u7r9W318a50CEL-LiNXXAimQ-NDHWP0mgYl0AepdeMahd7VhnmM3jnjqUMZJAbktfAATLEV-bDXdfkp_spt6qdsf_bRp_SU7X957djzPfu8ST-2MU_2BavjOG1cb68-VQw4cNwltSLv9-jYdbbu5kl3-QmlKFJNteFcilnx3cF9yPbgScHOvdm5Nzv3xv4Cf6l9-Q
ContentType eBook
Book
Copyright Copyright 2023 American Mathematical Society
Copyright_xml – notice: Copyright 2023 American Mathematical Society
DBID RYH
DEWEY 514.23
DOI 10.1090/memo/1395
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470473518
1470473518
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470473518
EBC30404201
BD01281330
10_1090_memo_1395
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADVEM
AEPJP
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a2056x-e4745538dfbdceeeb81d752bd688faf72bac93b2ebaa9b1a26d62d24c5b00373
ISBN 9781470460204
1470460203
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060466&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Mon Jun 16 09:14:44 EDT 2025
Wed Nov 26 02:59:13 EST 2025
Thu Jun 26 23:17:51 EDT 2025
Thu Aug 14 15:25:26 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCN 2023013006
LCCallNum_Ident QA169 .C373 2023
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2056x-e4745538dfbdceeeb81d752bd688faf72bac93b2ebaa9b1a26d62d24c5b00373
Notes Other authors: Samuel Grushevsky, Klaus Hulek, Radu Laza
February 2023, volume 282, number 1395 (fourth of 6 numbers)
Includes bibliographical references (p. 97-100)
OCLC 1372398092
PQID EBC30404201
PageCount 112
ParticipantIDs askewsholts_vlebooks_9781470473518
proquest_ebookcentral_EBC30404201
nii_cinii_1130577121818944658
ams_ebooks_10_1090_memo_1395
PublicationCentury 2000
PublicationDate 2023.
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023.
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2023
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0002864145
ssib052609506
ssj0008047
Score 2.6856003
Snippet We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT...
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Cohomology operations
Moduli theory
Threefolds (Algebraic geometry)
TableOfContents Introduction -- Preliminaries -- The cohomology of the Kirwan blowup, part I: equivariant cohomology of the semi-stable locus -- The cohomology of the Kirwan blowup, part II -- The intersection cohomology of the GIT moduli space <inline-formula content-type="math/mathml"> M GIT \mathcal {M}^{\operatorname {GIT}} </inline-formula> -- The intersection cohomology of the ball quotient -- The cohomology of the toroidal compactification -- Equivariant cohomology -- Stabilizers, normalizers, and fixed loci for cubic threefolds -- The moduli space of cubic surfaces
Cover -- Title page -- Chapter 1. Introduction -- Acknowledgments -- Chapter 2. Preliminaries -- 2.1. Notation and conventions -- 2.2. Moduli space of cubic threefolds and its standard compactifications \GIT and \BG -- 2.3. The Kirwan blowup \MK of the moduli space of cubic threefolds -- 2.4. The toroidal compactification -- Chapter 3. The cohomology of the Kirwan blowup, part I: equivariant cohomology of the semi-stable locus -- 3.1. The equivariantly perfect stratification and the equivariant cohomology of the semi-stable locus in general -- 3.2. The equivariant cohomology of the locus of semi-stable cubic threefolds -- Chapter 4. The cohomology of the Kirwan blowup, part II -- 4.1. The correction terms in general -- 4.2. The main correction terms for cubic threefolds -- 4.3. The extra correction terms for cubic threefolds -- 4.4. Putting the terms together to compute the cohomology of \calM^{ } -- Chapter 5. The intersection cohomology of the GIT moduli space \GIT -- 5.1. Obtaining the intersection cohomology of the GIT quotient from the cohomology of the Kirwan blowup, in general -- 5.2. The intersection cohomology of the GIT quotient for cubic threefolds -- 5.3. Putting the terms together to compute the cohomology of \GIT -- 5.4. The intersection cohomology of ̂\calM -- Chapter 6. The intersection cohomology of the ball quotient -- 6.1. A special case of the decomposition theorem -- 6.2. The intersection cohomology of the ball quotient -- Chapter 7. The cohomology of the toroidal compactification -- 7.1. The arithmetic of the two cusps of \calB/Γ -- 7.2. The cohomology of the toroidal boundary divisors -- 7.3. The cohomology of the toroidal compactification -- Appendix A. Equivariant cohomology -- A.1. Review of Atiyah-Bott -- A.2. Compact and complex Lie groups -- A.3. Kirwan's result for compact groups acting on symplectic manifolds
A.4. Fibrations -- Appendix B. Stabilizers, normalizers, and fixed loci for cubic threefolds -- B.1. Connected component \CC* -- B.2. Connected component \PGL(2,\CC) -- B.3. Connected component (\CC*)² -- Appendix C. The moduli space of cubic surfaces -- C.1. The moduli space of cubic curves -- C.2. The moduli space of cubic surfaces -- C.3. The proof of Theorem C.1 -- C.4. The cohomology of the Naruki compactification -- Bibliography -- Back Cover
Title Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models
URI https://www.ams.org/memo/1395/
https://cir.nii.ac.jp/crid/1130577121818944658
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30404201
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470473518
Volume 282
WOSCitedRecordID wos0000060466&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdLtsNy2ifL1g5t7DZMbUm25GuzrIWObtAWejOyJVMzf4woDqF_fZ9kxw7pYeywi4glI5H3k_We3pN-D6EvNpaUsxT2JkEmPZZT5Yk8kl4sFAV1klod4ZJN8MtLcXsb_-ozChqXToDXtdhu4z__FWqoA7Dt1dl_gHvoFCrgN4AOJcAO5YFFPDz2RAPNXVN1lEp94L9qVFsWX2HRyJxrIGvTIrOpebTOm1KZIXJgqgYQ69LiDEb2QhpZ2stV3sg1cKVB7a33ptTZqjV3etO7YK9k1epynCqldovtRSnbodsf8r4zWKVq930OhB74HMZg0kAta6lLmoG7ZNigBozbyCvpUgw_Wq792J5vrHTVWAcC7dJtHvBfn35z0T5K_Qma8Ag22E_Plj9vLgZPGhERC1jobu31o9Edmddu9B2nVOyf2NFO7FiOW9fM0Eya36BQQNms4WlSF8UjveyMjesXaGovoLxET3T9Cs3GP29eo_MRY9zkGFpwhzF2GNs6hzEeMcaAMQaMcYcx7jB-g26-L68X516fC8OTBGzUracZZyFoJ5WnCgwbDV-R4iFJVSRELnNOUpnFNCUwDWScBpJEKiKKsCy0Czenb9G0bmr9DuEQTHbBJeM5NCtfCU0izrn2NWwWRJjP0RHIJXHBepN0hxT8xIotsWKbo897Aks2Zf_iTt6choGYo2OQY5IVtgzATgo5D6w1KWLL0Aftn3YS7gbqjyIny9MFBb3CwC59_5c-PqDn49w8QtP1qtXH6Fm2WRdm9bGfJQ9JRmKF
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Cohomology+of+the+moduli+space+of+cubic+threefolds+and+its+smooth+models&rft.au=Casalaina-Martin%2C+Sebastian&rft.au=Grushevsky%2C+Samuel&rft.au=Hulek%2C+Klaus&rft.au=Laza%2C+Radu&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470460204&rft_id=info:doi/10.1090%2Fmemo%2F1395&rft.externalDocID=BD01281330
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470473518.jpg