Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–To...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Format: | E-Book Buch |
| Sprache: | Englisch |
| Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Ausgabe: | 1 |
| Schriftenreihe: | Memoirs of the American Mathematical Society |
| Schlagworte: | |
| ISBN: | 9781470460204, 1470460203 |
| ISSN: | 0065-9266, 1947-6221 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic
threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball
quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of
the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a
detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space
of cubic surfaces is discussed in an appendix. |
|---|---|
| AbstractList | View the abstract. We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix. |
| Author | Grushevsky, Samuel Hulek, Klaus Casalaina-Martin, Sebastian Laza, Radu |
| Author_xml | – sequence: 1 givenname: Sebastian surname: Casalaina-Martin fullname: Casalaina-Martin, Sebastian – sequence: 2 givenname: Samuel surname: Grushevsky fullname: Grushevsky, Samuel – sequence: 3 givenname: Klaus surname: Hulek fullname: Hulek, Klaus – sequence: 4 givenname: Radu surname: Laza fullname: Laza, Radu |
| BackLink | https://cir.nii.ac.jp/crid/1130577121818944658$$DView record in CiNii |
| BookMark | eNpVkc1P3DAQxV0KqLvbPfAfRGoP9BAYj7-PbUQBiaoH6NmyY6cJJDFdZ_vx33fDrlT1MiPN_PSe9N6SHI9pjIScUbigYOByiEO6pMyIV2RtlKZcAVdMUH1EFtRwVUpE-vrfTwICPyYLAClKg1KekCUCMqBsdzolS8oUMqPB4BuyzvkRAFBLTrlYkJsqtWlIffr-p0hNMbWx-JLCtu-K-2dXx_lWbX1XFw_tJsYm9SEXbgzF7ZSL-yGlqZ352Oe35KRxfY7rw16Rb5-vHqqb8u7r9W318a50CEL-LiNXXAimQ-NDHWP0mgYl0AepdeMahd7VhnmM3jnjqUMZJAbktfAATLEV-bDXdfkp_spt6qdsf_bRp_SU7X957djzPfu8ST-2MU_2BavjOG1cb68-VQw4cNwltSLv9-jYdbbu5kl3-QmlKFJNteFcilnx3cF9yPbgScHOvdm5Nzv3xv4Cf6l9-Q |
| ContentType | eBook Book |
| Copyright | Copyright 2023 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2023 American Mathematical Society |
| DBID | RYH |
| DEWEY | 514.23 |
| DOI | 10.1090/memo/1395 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470473518 1470473518 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470473518 EBC30404201 BD01281330 10_1090_memo_1395 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ABARN ABQPQ ADVEM AEPJP AERYV AFOJC AHWGJ AJFER BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a2056x-e4745538dfbdceeeb81d752bd688faf72bac93b2ebaa9b1a26d62d24c5b00373 |
| ISBN | 9781470460204 1470460203 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060466&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Mon Jun 16 09:14:44 EDT 2025 Wed Nov 26 02:59:13 EST 2025 Thu Jun 26 23:17:51 EDT 2025 Thu Aug 14 15:25:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCN | 2023013006 |
| LCCallNum_Ident | QA169 .C373 2023 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a2056x-e4745538dfbdceeeb81d752bd688faf72bac93b2ebaa9b1a26d62d24c5b00373 |
| Notes | Other authors: Samuel Grushevsky, Klaus Hulek, Radu Laza February 2023, volume 282, number 1395 (fourth of 6 numbers) Includes bibliographical references (p. 97-100) |
| OCLC | 1372398092 |
| PQID | EBC30404201 |
| PageCount | 112 |
| ParticipantIDs | askewsholts_vlebooks_9781470473518 proquest_ebookcentral_EBC30404201 nii_cinii_1130577121818944658 ams_ebooks_10_1090_memo_1395 |
| PublicationCentury | 2000 |
| PublicationDate | 2023. |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023. |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2023 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0002864145 ssib052609506 ssj0008047 |
| Score | 2.6856003 |
| Snippet | We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic
threefolds: the GIT... View the abstract. |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Cohomology operations Moduli theory Threefolds (Algebraic geometry) |
| TableOfContents | Introduction
--
Preliminaries
--
The cohomology of the Kirwan blowup, part I: equivariant cohomology of the semi-stable locus
--
The cohomology of the Kirwan blowup, part II
--
The intersection cohomology of the GIT moduli space <inline-formula content-type="math/mathml">
M
GIT \mathcal {M}^{\operatorname
{GIT}} </inline-formula>
--
The intersection cohomology of the ball quotient
--
The cohomology of the toroidal compactification
--
Equivariant cohomology
--
Stabilizers, normalizers, and fixed loci for cubic threefolds
--
The moduli space of cubic surfaces Cover -- Title page -- Chapter 1. Introduction -- Acknowledgments -- Chapter 2. Preliminaries -- 2.1. Notation and conventions -- 2.2. Moduli space of cubic threefolds and its standard compactifications \GIT and \BG -- 2.3. The Kirwan blowup \MK of the moduli space of cubic threefolds -- 2.4. The toroidal compactification -- Chapter 3. The cohomology of the Kirwan blowup, part I: equivariant cohomology of the semi-stable locus -- 3.1. The equivariantly perfect stratification and the equivariant cohomology of the semi-stable locus in general -- 3.2. The equivariant cohomology of the locus of semi-stable cubic threefolds -- Chapter 4. The cohomology of the Kirwan blowup, part II -- 4.1. The correction terms in general -- 4.2. The main correction terms for cubic threefolds -- 4.3. The extra correction terms for cubic threefolds -- 4.4. Putting the terms together to compute the cohomology of \calM^{ } -- Chapter 5. The intersection cohomology of the GIT moduli space \GIT -- 5.1. Obtaining the intersection cohomology of the GIT quotient from the cohomology of the Kirwan blowup, in general -- 5.2. The intersection cohomology of the GIT quotient for cubic threefolds -- 5.3. Putting the terms together to compute the cohomology of \GIT -- 5.4. The intersection cohomology of ̂\calM -- Chapter 6. The intersection cohomology of the ball quotient -- 6.1. A special case of the decomposition theorem -- 6.2. The intersection cohomology of the ball quotient -- Chapter 7. The cohomology of the toroidal compactification -- 7.1. The arithmetic of the two cusps of \calB/Γ -- 7.2. The cohomology of the toroidal boundary divisors -- 7.3. The cohomology of the toroidal compactification -- Appendix A. Equivariant cohomology -- A.1. Review of Atiyah-Bott -- A.2. Compact and complex Lie groups -- A.3. Kirwan's result for compact groups acting on symplectic manifolds A.4. Fibrations -- Appendix B. Stabilizers, normalizers, and fixed loci for cubic threefolds -- B.1. Connected component \CC* -- B.2. Connected component \PGL(2,\CC) -- B.3. Connected component (\CC*)² -- Appendix C. The moduli space of cubic surfaces -- C.1. The moduli space of cubic curves -- C.2. The moduli space of cubic surfaces -- C.3. The proof of Theorem C.1 -- C.4. The cohomology of the Naruki compactification -- Bibliography -- Back Cover |
| Title | Cohomology of the Moduli Space of Cubic Threefolds and Its Smooth Models |
| URI | https://www.ams.org/memo/1395/ https://cir.nii.ac.jp/crid/1130577121818944658 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30404201 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470473518 |
| Volume | 282 |
| WOSCitedRecordID | wos0000060466&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdLtsNy2ifL1g5t7DZMbUm25GuzrIWObtAWejOyJVMzf4woDqF_fZ9kxw7pYeywi4glI5H3k_We3pN-D6EvNpaUsxT2JkEmPZZT5Yk8kl4sFAV1klod4ZJN8MtLcXsb_-ozChqXToDXtdhu4z__FWqoA7Dt1dl_gHvoFCrgN4AOJcAO5YFFPDz2RAPNXVN1lEp94L9qVFsWX2HRyJxrIGvTIrOpebTOm1KZIXJgqgYQ69LiDEb2QhpZ2stV3sg1cKVB7a33ptTZqjV3etO7YK9k1epynCqldovtRSnbodsf8r4zWKVq930OhB74HMZg0kAta6lLmoG7ZNigBozbyCvpUgw_Wq792J5vrHTVWAcC7dJtHvBfn35z0T5K_Qma8Ag22E_Plj9vLgZPGhERC1jobu31o9Edmddu9B2nVOyf2NFO7FiOW9fM0Eya36BQQNms4WlSF8UjveyMjesXaGovoLxET3T9Cs3GP29eo_MRY9zkGFpwhzF2GNs6hzEeMcaAMQaMcYcx7jB-g26-L68X516fC8OTBGzUracZZyFoJ5WnCgwbDV-R4iFJVSRELnNOUpnFNCUwDWScBpJEKiKKsCy0Czenb9G0bmr9DuEQTHbBJeM5NCtfCU0izrn2NWwWRJjP0RHIJXHBepN0hxT8xIotsWKbo897Aks2Zf_iTt6choGYo2OQY5IVtgzATgo5D6w1KWLL0Aftn3YS7gbqjyIny9MFBb3CwC59_5c-PqDn49w8QtP1qtXH6Fm2WRdm9bGfJQ9JRmKF |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Cohomology+of+the+moduli+space+of+cubic+threefolds+and+its+smooth+models&rft.au=Casalaina-Martin%2C+Sebastian&rft.au=Grushevsky%2C+Samuel&rft.au=Hulek%2C+Klaus&rft.au=Laza%2C+Radu&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470460204&rft_id=info:doi/10.1090%2Fmemo%2F1395&rft.externalDocID=BD01281330 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470473518.jpg |

