Trust-Region Method with Deep Reinforcement Learning in Analog Design Space Exploration

This paper introduces new perspectives on analog design space search. To minimize the time-to-market, this endeavor better cast as constraint satisfaction problem than global optimization defined in prior arts. We incorporate model based agents, contrasted with model-free learning, to implement a tr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2021 58th ACM/IEEE Design Automation Conference (DAC) s. 1225 - 1230
Hlavní autoři: Yang, Kai-En, Tsai, Chia-Yu, Shen, Hung-Hao, Chiang, Chen-Feng, Tsai, Feng-Ming, Wang, Chung-An, Ting, Yiju, Yeh, Chia-Shun, Lai, Chin-Tang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 05.12.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces new perspectives on analog design space search. To minimize the time-to-market, this endeavor better cast as constraint satisfaction problem than global optimization defined in prior arts. We incorporate model based agents, contrasted with model-free learning, to implement a trust-region strategy. As such, simple feed-forward networks can be trained with supervised learning, where the convergence is relatively trivial. Experiment results demonstrate orders of magnitude improvement on search iterations. Additionally, the unprecedented consideration of PVT conditions are accommodated. On circuits with TSMC 5/6nm process, our method achieve performance surpassing human designers. Furthermore, this framework is in production in industrial settings.
DOI:10.1109/DAC18074.2021.9586087