Trust-Region Method with Deep Reinforcement Learning in Analog Design Space Exploration

This paper introduces new perspectives on analog design space search. To minimize the time-to-market, this endeavor better cast as constraint satisfaction problem than global optimization defined in prior arts. We incorporate model based agents, contrasted with model-free learning, to implement a tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2021 58th ACM/IEEE Design Automation Conference (DAC) S. 1225 - 1230
Hauptverfasser: Yang, Kai-En, Tsai, Chia-Yu, Shen, Hung-Hao, Chiang, Chen-Feng, Tsai, Feng-Ming, Wang, Chung-An, Ting, Yiju, Yeh, Chia-Shun, Lai, Chin-Tang
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 05.12.2021
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces new perspectives on analog design space search. To minimize the time-to-market, this endeavor better cast as constraint satisfaction problem than global optimization defined in prior arts. We incorporate model based agents, contrasted with model-free learning, to implement a trust-region strategy. As such, simple feed-forward networks can be trained with supervised learning, where the convergence is relatively trivial. Experiment results demonstrate orders of magnitude improvement on search iterations. Additionally, the unprecedented consideration of PVT conditions are accommodated. On circuits with TSMC 5/6nm process, our method achieve performance surpassing human designers. Furthermore, this framework is in production in industrial settings.
DOI:10.1109/DAC18074.2021.9586087