Asymptotic Spreading for General Heterogeneous Fisher-KPP Type Equations

In this monograph, we review the theory and establish new and general results regarding spreading properties for heterogeneous reaction-diffusion equations: The characterizations of these sets involve two new notions of generalized principal eigenvalues for linear parabolic operators in unbounded do...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Berestycki, Henri, Nadin, Grégoire
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2022
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:9781470454296, 1470454297
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • Introduction -- A general formula for the expansion sets -- Exact asymptotic spreading speed in different frameworks -- Properties of the generalized principal eigenvalues -- Proof of the spreading property -- The homogeneous, periodic and compactly supported cases -- The almost periodic case -- The uniquely ergodic case -- The radially periodic case -- The space-independent case -- The directionally homogeneous case -- Proof of the spreading property with the alternative definition of the expansion sets and applications -- Further examples and other open problems