Multiplicative Invariant Fields of Dimension ≤6

The finite subgroups of

Saved in:
Bibliographic Details
Main Authors: Hoshi, Akinari, Kang, Ming-chang, Yamasaki, Aiichi
Format: eBook Book
Language:English
Published: Providence, Rhode Island American Mathematical Society 2023
Series:Memoirs of the American Mathematical Society
Subjects:
ISBN:9781470460228, 147046022X
ISSN:0065-9266, 1947-6221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The finite subgroups of
AbstractList The finite subgroups of
Author Hoshi, Akinari
Yamasaki, Aiichi
Kang, Ming-chang
Author_xml – sequence: 1
  givenname: Akinari
  surname: Hoshi
  fullname: Hoshi, Akinari
– sequence: 2
  givenname: Ming-chang
  surname: Kang
  fullname: Kang, Ming-chang
– sequence: 3
  givenname: Aiichi
  surname: Yamasaki
  fullname: Yamasaki, Aiichi
BackLink https://cir.nii.ac.jp/crid/1130014393804372135$$DView record in CiNii
BookMark eNpFkM1KAzEUhaO24LR24RsM6HbsvTeZZLKUarVQcSNuhySTQHB-xNTiK_gePplPokMFN-cszsdZfDM26YfeM3aOcIWgYdn5bliiAH7EFlpVKBQIJUDgMctQC1VIIjz53yQQVROWAciy0CTllM0IiAOSlnjKFilFCyVJ0CWqjOHDe7uLr210Zhf3Pt_0e_MWTb_L19G3TcqHkN_EzvcpDn3-_fklz9g0mDb5xV_P2fP69ml1X2wf7zar621hCIA-isYEbIBbJxoAg-BQVUELK7XV2opGhYCV5xWCqWwg61zgjXCKhHRNIM7n7PJw3MdYuzgmIgdAwTWvQHBFyMtf7OKAmS7V3g7DS6oR6tFePdqrR3v8B8jqWe8
ContentType eBook
Book
Copyright Copyright 2023 American Mathematical Society
Copyright_xml – notice: Copyright 2023 American Mathematical Society
DBID RYH
DOI 10.1090/memo/1403
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470474041
1470474042
EISSN 1947-6221
ExternalDocumentID BD01712705
10_1090_memo_1403
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQPQ
ADVEM
AEPJP
AERYV
AFOJC
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a2002x-daf1d03bc4d00a10c178f94b69b99b4d7ff18e3810a8bf2bccf3d4c7246cdf233
ISBN 9781470460228
147046022X
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060453&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Jun 27 00:38:55 EDT 2025
Thu Aug 14 15:25:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords unramified Brauer groups
crystallographic groups
integral representations
Rationality problems
algebraic tori
Noether’s problem
LCCN 2023012961
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a2002x-daf1d03bc4d00a10c178f94b69b99b4d7ff18e3810a8bf2bccf3d4c7246cdf233
Notes Includes bibliographical references (p. 135-137)
Other authors: Ming-chang Kang, Aiichi Yamasaki
March 2023, volume 283, number 1403 (sixth of 7 numbers)
ParticipantIDs nii_cinii_1130014393804372135
ams_ebooks_10_1090_memo_1403
PublicationCentury 2000
PublicationDate 2023.
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023.
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, RI
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2023
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssib052609517
ssj0008047
ssj0002865190
ssib056432286
Score 2.6601367
Snippet The finite subgroups of
SourceID nii
ams
SourceType Publisher
TableOfContents Introduction -- Preliminaries and the unramified Brauer groups -- CARAT ID of the <inline-formula content-type="math/mathml"> Z \mathbb {Z} </inline-formula>-classes in dimensions <inline-formula content-type="math/mathml"> 5 5 </inline-formula> and <inline-formula content-type="math/mathml"> 6 6 </inline-formula> -- Proof of Theorem -- Classification of elementary abelian groups <inline-formula content-type="math/mathml"> ( C 2 ) k (C_2)^k </inline-formula> in <inline-formula content-type="math/mathml"> G L n ( Z ) GL_n(\mathbb {Z}) </inline-formula> with <inline-formula content-type="math/mathml"> n ≤ 7 n\leq 7 </inline-formula> -- The case <inline-formula content-type="math/mathml"> G = ( C 2 ) 3 G=(C_2)^3 </inline-formula> with <inline-formula content-type="math/mathml"> H u 2 ( G , M ) ≠ 0 H_u^2(G,M)\neq 0 </inline-formula> -- The case <inline-formula content-type="math/mathml"> G = A 6 G=A_6 </inline-formula> with <inline-formula content-type="math/mathml"> H u 2 ( G , M ) ≠ 0 H_u^2(G,M)\neq 0 </inline-formula> and Noether’s problem for <inline-formula content-type="math/mathml"> N ⋊ A 6 N\rtimes A_6 </inline-formula> -- Some lattices of rank <inline-formula content-type="math/mathml"> 2 n + 2 , 4 n 2n+2, 4n </inline-formula>, and <inline-formula content-type="math/mathml"> p ( p − 1 ) p(p-1) </inline-formula> -- GAP computation: an algorithm to compute <inline-formula content-type="math/mathml"> H u 2 ( G , M ) H_u^2(G,M) </inline-formula> -- Tables: multiplicative invariant fields with non-trivial unramified Brauer groups
Title Multiplicative Invariant Fields of Dimension ≤6
URI https://www.ams.org/memo/1403/
https://cir.nii.ac.jp/crid/1130014393804372135
Volume 283
WOSCitedRecordID wos0000060453&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZg6YGe-Ku67S7KgZ5QVMf2xvFxgUIloOVQ0N4i24lFVDZBTbvaV-h79Ml4EmacrFPKoeLAxcqPkpH9JePxeOYbQl7BpAGqEf7vmRKwQIEpJlaS6jgtrQTrHgxw63lmP8mTk2yxUF965t3WlxOQdZ2t1-rnf4UargHYmDr7D3CHl8IFOAbQoQXYob1jEYfTviBTFxvonXAr5AJZwTpYe-6l8kfhQzYK5PJvPeIY5KAO5oNn7rhpfYHf1_NzzNGtgiruPcqfYZKLfTJC0BR6qVvd1b2eV5X9Xt32ITB-x4cwbA4FqlikImkCF0lYcCZC4k4q6xK6_1K_VGG84rJcNj6Pn_Jhlgmxf2_eIUUPk0g8-1CmsGB-9OHo9OvH4BnDXFkwU3wWXi9tsSHn2kjfcEQpeojSDlGW58ptoa2r6paNcPaEjDBv5Cl5UNbPyPbQx_Y5Sf6EJgrQRB00UeOiAE306_omfUG-vT86e3sc97UqYo1hLuu40C4pKDdWFJTqhNpEZk4JkyqjlBGFdC7JSuRT05lxzFjreCGsZCK1hWOc75BR3dTlLomscJwLq5gTTFgzM6CTMwOKE54C9cvGZAIdzf1uept3UQQ0x3HIcRzGZAojkNsK2wS3K8EmVjxDFiuW8NnePff3yePhG5mQ0eXFVTklW3Z1WbUXL3u0fgM5-Sdn
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Multiplicative+invariant+fields+of+dimension+%E2%89%A46&rft.au=Hoshi%2C+Akinari&rft.au=Kang%2C+Ming-Chang&rft.au=Yamasaki%2C+Aiichi&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470460228&rft_id=info:doi/10.1090%2Fmemo%2F1403&rft.externalDocID=BD01712705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0065-9266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0065-9266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0065-9266&client=summon