Utilizing Hybrid Machine Learning To Estimate The Compressive Strength Of High-Performance Concrete

This article examines the correlation between compressive strength (CS) and High-performance concrete (HPC) and its practical use in construction engineering. HPC is widely recognized for its remarkable attributes of strength and durability, which render it a high option for deployment in high-stres...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:淡江理工學刊 Ročník 27; číslo 11; s. 3509 - 3522
Hlavní autoři: Lili GUO, Daming FAN
Médium: Journal Article
Jazyk:angličtina
Vydáno: 淡江大學 01.01.2024
Témata:
ISSN:2708-9967
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article examines the correlation between compressive strength (CS) and High-performance concrete (HPC) and its practical use in construction engineering. HPC is widely recognized for its remarkable attributes of strength and durability, which render it a high option for deployment in high-stress infrastructural systems like bridges and tunnels. The CS of concrete is a fundamental attribute critical in determining its capacity to maintain structural integrity and endurance over time. This paper investigates the efficacy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in forecasting the CS of HPC. The presented model coupled with three meta-heuristic algorithms, namely Chef-based optimization algorithm (COA), Henry Gas Solubility Optimization (HSO), and Artificial Ecosystem-Based Optimization (AEO), to improve the performance and accuracy of ANFIS. In addition, the prediction was applied by 344 datasets from published papers in two phases containing training (70%) and testing (30%). As a result, ANEB (ANFIS coupled with AEO) obtained suitable results with high R2 and less RMSE value compared to other models. This precision in forecasting permits engineers to design concrete structures that are not only more efficient but also cost-effective. The integration of ANFIS in the prediction of the CS of HPC has the potential to facilitate the development of more resilient and durable infrastructures, consequently yielding consequential advantages for the construction sector.
AbstractList This article examines the correlation between compressive strength (CS) and High-performance concrete (HPC) and its practical use in construction engineering. HPC is widely recognized for its remarkable attributes of strength and durability, which render it a high option for deployment in high-stress infrastructural systems like bridges and tunnels. The CS of concrete is a fundamental attribute critical in determining its capacity to maintain structural integrity and endurance over time. This paper investigates the efficacy of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model in forecasting the CS of HPC. The presented model coupled with three meta-heuristic algorithms, namely Chef-based optimization algorithm (COA), Henry Gas Solubility Optimization (HSO), and Artificial Ecosystem-Based Optimization (AEO), to improve the performance and accuracy of ANFIS. In addition, the prediction was applied by 344 datasets from published papers in two phases containing training (70%) and testing (30%). As a result, ANEB (ANFIS coupled with AEO) obtained suitable results with high R2 and less RMSE value compared to other models. This precision in forecasting permits engineers to design concrete structures that are not only more efficient but also cost-effective. The integration of ANFIS in the prediction of the CS of HPC has the potential to facilitate the development of more resilient and durable infrastructures, consequently yielding consequential advantages for the construction sector.
Author Lili GUO
Daming FAN
Author_xml – sequence: 1
  fullname: Lili GUO
– sequence: 2
  fullname: Daming FAN
BookMark eNotkE1LAzEYhHOoYNX-BnPUw9Y3yW4-jlKqFaoVbM9LdvOmm9JmJRsF_fW26mEYGIZnYC7IKPYRCblmMJVMw93ODjjlwEvGaq5uGLudAoAekTFXoAtjpDonk2EIDVSghBCGj0m7yWEfvkPc0sVXk4Kjz7btQkS6RJviKV_3dD7kcLAZ6bpDOusP7wmPnE-kbzlh3OaOrjxdhG1XvGLyfTrY2J6KsU2Y8YqcebsfcPLvl2TzMF_PFsVy9fg0u18WlhmTC-eQo9Gq0q1vSoveo3C6NI3TSlrZMFs14FTL0AlXVQKxBK6UdNw3RkonLon449qQQg71rv9I8ThYs0qClFrWL7_3AKvgqBpO94gfJ1pe0w
ContentType Journal Article
DBID 188
DOI 10.6180/jase.202411_27(11).0008
DatabaseName Airiti Library
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 3522
ExternalDocumentID 15606686_N202410150015_00008
GroupedDBID 188
2UF
ALMA_UNASSIGNED_HOLDINGS
ID FETCH-LOGICAL-a199t-dde2e98758cfb4aeffe3d849bd876a6b1a5b0d7c1ed3d553ee402776d2fb966d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001171532100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2708-9967
IngestDate Tue Nov 19 01:12:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Compressive strength
Artificial Ecosystem-Based Optimization
High-performance concrete
Adaptive Neuro-Fuzzy Inference System
Chef-based optimization algorithm
Henry Gas Solubility Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a199t-dde2e98758cfb4aeffe3d849bd876a6b1a5b0d7c1ed3d553ee402776d2fb966d3
PageCount 14
ParticipantIDs airiti_journals_15606686_N202410150015_00008
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle 淡江理工學刊
PublicationTitle_FL Journal of Applied Science and Engineering
PublicationYear 2024
Publisher 淡江大學
Publisher_xml – name: 淡江大學
SSID ssib050733392
ssib053285227
Score 2.2493842
Snippet This article examines the correlation between compressive strength (CS) and High-performance concrete (HPC) and its practical use in construction engineering....
SourceID airiti
SourceType Publisher
StartPage 3509
Title Utilizing Hybrid Machine Learning To Estimate The Compressive Strength Of High-Performance Concrete
URI https://www.airitilibrary.com/Article/Detail/15606686-N202410150015-00008
Volume 27
WOSCitedRecordID wos001171532100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 2708-9967
  databaseCode: M~E
  dateStart: 20120101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib050733392
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfK4MAFgQDxLR-wBCqBOLFj-9iNlB1Gu0Mr7VY5scuKthRtoRoc-E_4X3kvn900IXbg0MhK2_i17xe_n1_eByGvrXVZKIQNJKb1iFzALZVhQYDIhUIBX-Z5VjWbUJOJPjoyh4PB7zYXZnOiikJfXJhv_1XVcA6UjamzN1B3d1E4AWNQOhxB7XD8J8XPy9XJ6id6APZ_YDoW9hY6Ri550HpBZuthCnc2cFU_rPvWndbhsBtfPaUuvpTHw2kdAxIcbmUW7K0LIJnlpeghliZsV7ERrwacmTFLFTMh0wlLZfWWxMHoI9vVONCa6Q42ByDr8NN82jvMT1HCcVNjtnFHROKKO-K6SWEKwUaqm6tf4iIVAjZM3ZCjXY_rWgEt7vjW6hrL0GxZauSO11mBhFdhk1-BBrxHEWGLEyksewW2AauThro3fl1IImaUJ4lOFpPqK-gIgtei4tS3yO1ISYMRg59_pe1yJbHfZdw_lJZxpEEiTNDvflcdUYgCfbgszhvO31aiAPOxK6xftUVrZvfJvWY_Qkc1jh6QgS8ekrzDEK0xRBsM0RZDdLamLYYoYIhuYYi2GKLTJb2KIdpi6BGZj9PZ3n7QdOMILDemDMAORt7A9lbny0xYDDeKnRYmc2BQbZJxK7PQqZx7FzspY-8FxgckLlpmsKd28WOyU6wL_4RQ6XKulk5lwH6FtibLNbBi7b1NrDRePiXv6v9k0dxX54u_qefZzT7-nNztgfuC7JRn3_1LcifflKvzs1eViv8A2zloAw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Hybrid+Machine+Learning+To+Estimate+The+Compressive+Strength+Of+High-Performance+Concrete&rft.jtitle=%E6%B7%A1%E6%B1%9F%E7%90%86%E5%B7%A5%E5%AD%B8%E5%88%8A&rft.au=Lili+GUO&rft.au=Daming+FAN&rft.date=2024-01-01&rft.pub=%E6%B7%A1%E6%B1%9F%E5%A4%A7%E5%AD%B8&rft.issn=2708-9967&rft.volume=27&rft.issue=11&rft.spage=3509&rft.epage=3522&rft_id=info:doi/10.6180%2Fjase.202411_27%2811%29.0008&rft.externalDocID=15606686_N202410150015_00008
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F15606686-c.jpg