Tits polygons
We introduce the notion of a Tits polygon, a generalization of the notion of a Moufang polygon, and show that Tits polygons arise in a natural way from certain configurations of parabolic subgroups in an arbitrary spherical buildings satisfying the Moufang condition. We establish numerous basic prop...
Uložené v:
| Hlavní autori: | , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2022
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: |
Geometry
> Finite geometry and special incidence structures
> Buildings and the geometry of diagrams. msc
Geometry
> Finite geometry and special incidence structures
> Generalized quadrangles, generalized polygons. msc
Group theory and generalizations
> Structure and classification of infinite or finite groups
> Groups with a $BN$-pair; buildings. msc
|
| ISBN: | 1470451018, 9781470451011 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Obsah:
- Introduction -- Tits polygons -- Tits hexagons -- Groups of relative rank 1 -- Appendix by Holger P. Petersson
- Cover -- Title page -- Introduction -- Acknowledgment -- Chapter 1. Tits polygons -- 1.1. Basic definitions -- 1.2. Examples -- 1.3. Commutator relations -- 1.4. Opposite roots -- 1.5. Uniqueness -- 1.6. A bound on -- Chapter 2. Tits hexagons -- 2.1. Cubic norm structures -- 2.2. Hexagons -- 2.3. Coordinates for Δ -- 2.4. Hexagons of polar type -- 2.5. The associated cubic norm structure -- 2.6. Automorphisms and classification -- Chapter 3. Groups of relative rank 1 -- 3.1. Descent -- 3.2. The subgraph Λ -- 3.3. The Galois involution -- 3.4. The Moufang set (Δ,⟨ ⟩) -- 3.5. The structure map -- 3.6. The generic case -- 3.7. A formula for -- 3.8. Arbitrary Galois groups -- Chapter 4. Appendix by Holger P. Petersson -- 4.1. Cubic norm structures -- 4.2. The cubic norm structure ℋ( , ) -- 4.3. Irreducibility of the structure group -- Bibliography -- Index -- Back Cover

