Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry

In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting...

Full description

Saved in:
Bibliographic Details
Main Authors: Margolis, Stuart, Saliola, Franco V., Steinberg, Benjamin
Format: eBook Book
Language:English
Published: Providence, Rhode Island American Mathematical Society 2022
Edition:1
Series:Memoirs of the American Mathematical Society
Subjects:
ISBN:9781470450427, 1470450429
ISSN:0065-9266, 1947-6221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Preface -- Acknowledgements -- Introduction -- Left Regular Bands, Hyperplane Arrangements, Oriented Matroids and Generalizations -- Regular CW Complexes and CW Posets -- Algebras -- Projective Resolutions and Global Dimension -- Quiver Presentations -- Quadratic and Koszul Duals -- Injective Envelopes for Hyperplane Arrangements, Oriented Matroids, CAT(0) Cube Complexes and COMs -- Enumeration of Cells for CW Left Regular Bands -- Cohomological Dimension
  • 10.1. Cohomology of left regular bands -- Bibliography -- Nomenclature -- Index -- Back Cover
  • Cover -- Title page -- Preface -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. Left Regular Bands, Hyperplane Arrangements, Oriented Matroids and Generalizations -- 2.1. Green's relations and the structure of left regular bands -- 2.2. Free left regular bands and matroids -- 2.3. Free partially commutative left regular bands -- 2.4. Hyperplane arrangements and oriented matroids -- 2.5. Strong elimination systems, lopsided systems and COMs -- 2.6. Complex hyperplane arrangements -- Chapter 3. Regular CW Complexes and CW Posets -- 3.1. Simplicial complexes and order complexes of posets -- 3.2. Regular CW complexes and CW posets -- 3.3. Oriented interval greedoids -- 3.4. The topology of left regular bands -- 3.5. CAT(0) cube complexes -- 3.6. CAT(0) zonotopal complexes -- Chapter 4. Algebras -- 4.1. Rings and radicals -- 4.2. Finite dimensional algebras -- 4.3. Quivers and basic algebras -- 4.4. Gradings, quadratic algebras and Koszul algebras -- 4.5. The algebra of a left regular band -- 4.6. Existence of identity elements in left regular band algebras -- 4.7. Cartan invariants -- Chapter 5. Projective Resolutions and Global Dimension -- 5.1. Actions of left regular bands on CW posets -- 5.2. Projective resolutions -- 5.3. Ext and global dimension -- 5.4. Minimal projective resolutions -- Chapter 6. Quiver Presentations -- 6.1. A general result -- 6.2. A quiver presentation for CW left regular bands -- Chapter 7. Quadratic and Koszul Duals -- 7.1. Quadratic duals -- 7.2. Koszul duals -- Chapter 8. Injective Envelopes for Hyperplane Arrangements, Oriented Matroids, CAT(0) Cube Complexes and COMs -- 8.1. Generalities -- 8.2. Hyperplane arrangements -- 8.3. Oriented matroids -- Chapter 9. Enumeration of Cells for CW Left Regular Bands -- 9.1. Flag vectors -- 9.2. Cartan invariants -- Chapter 10. Cohomological Dimension