Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry

In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Margolis, Stuart, Saliola, Franco V., Steinberg, Benjamin
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2022
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:9781470450427, 1470450429
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent paper, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple modules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of examples is a left regular band structure on the face poset of a CAT(0) cube complex. Also, the recently introduced notion of a COM (complex of oriented matroids or conditional oriented matroid) fits nicely into our setting and includes CAT(0) cube complexes and certain more general CAT(0) zonotopal complexes. A fairly complete picture of the representation theory for CW left regular bands is obtained.
AbstractList In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent paper, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple modules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of examples is a left regular band structure on the face poset of a CAT(0) cube complex. Also, the recently introduced notion of a COM (complex of oriented matroids or conditional oriented matroid) fits nicely into our setting and includes CAT(0) cube complexes and certain more general CAT(0) zonotopal complexes. A fairly complete picture of the representation theory for CW left regular bands is obtained.
View the abstract.
Author Steinberg, Benjamin
Saliola, Franco V.
Margolis, Stuart
Author_xml – sequence: 1
  givenname: Stuart
  surname: Margolis
  fullname: Margolis, Stuart
– sequence: 2
  givenname: Franco V.
  surname: Saliola
  fullname: Saliola, Franco V.
– sequence: 3
  givenname: Benjamin
  surname: Steinberg
  fullname: Steinberg, Benjamin
BackLink https://cir.nii.ac.jp/crid/1130573251094305170$$DView record in CiNii
BookMark eNo1kVuP0zAQhQ3sItqlD_wDSyAhJMKO7_EjVMtFWokXxGvkJJOu2SQutrn0kX-O03ZfPNb405nxOWtyMYcZCXnB4B0DC9cTTuGaCakekTWTBqS2TOrHZMWsNJXmnD0hG2vq45sCyc0FWQFoVVmu9SVZc-AcwGhTPy0K3CqurbD6Gdmk9AMAuLKCg1iRf1scR9qFaT_iX0xv6T4kzDSHfRjD7kDd3NN8hzTiPmLCObvsw7y0QjzQMFA37rCNLlEXffLzjvr5oee7Rbj1s8sh-i4dxXqfuogZ6Q7DhDkenpPLwY0JN-d6Rb5_vPm2_Vzdfv30Zfv-tnLMlv0rgw57RKM67SxXQ1s-VDspnBK2bwVA3TlZg7OlyLaVQrDWGt0z5HUnh0FckTcnYZfu8U-6C2NOze8R2xDuU_Pg5tHpwr4-sfsYfv7ClJsj1hUDohubmw9bXSte0EK-OpGz903nl5MxAcoIrkqWslyZgYK9PA-fUnMeyaBZ0m6WtJslbfEf2TCT3w
CitedBy_id crossref_primary_10_5802_alco_412
crossref_primary_10_1093_imrn_rnaf105
crossref_primary_10_1007_s10474_023_01347_1
ContentType eBook
Book
Copyright Copyright 2021 American Mathematical Society
Copyright_xml – notice: Copyright 2021 American Mathematical Society
DBID RYH
DEWEY 512/.27
DOI 10.1090/memo/1345
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1470469146
9781470469146
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470469146
EBC6852914
BC12776098
10_1090_memo_1345
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
YNT
YQT
38.
AABBV
ABARN
ABQKM
ABQPQ
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a19952-7eaedee75c6a925fb9398a43a539db3008ca480a9ca44bb4331b976d1e28c4ff3
ISBN 9781470450427
1470450429
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000059468&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 03:14:34 EST 2024
Wed Dec 10 12:36:15 EST 2025
Thu Jun 26 22:20:17 EDT 2025
Thu Aug 14 15:25:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords quivers
zonotopes
CAT zonotopal complexes
finite dimensional algebras
CAT cube complexes
hyperplane arrangements
Regular cell complexes
left regular bands
oriented matroids
LCCN 2022007678
LCCallNum_Ident QA611.35 .M37 2021
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a19952-7eaedee75c6a925fb9398a43a539db3008ca480a9ca44bb4331b976d1e28c4ff3
Notes November 2021, volume 274, number 1345 (third of 4 numbers)
Includes bibliographical references (p. 123-128) and index
OCLC 1295269396
PQID EBC6852914
PageCount 154
ParticipantIDs askewsholts_vlebooks_9781470469146
proquest_ebookcentral_EBC6852914
nii_cinii_1130573251094305170
ams_ebooks_10_1090_memo_1345
PublicationCentury 2000
PublicationDate 2022.
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022.
PublicationDecade 2020
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, R.I
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2022
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0002593203
ssib048502305
ssj0008047
Score 2.6982307
Snippet In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and...
View the abstract.
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Associative rings and algebras -- Homological methods -- Homological dimension. msc
Associative rings and algebras -- Representation theory of rings and algebras -- Representations of Artinian rings. msc
Associative rings and algebras -- Rings and algebras arising under various constructions -- Quadratic and Koszul algebras. msc
Combinatorial analysis
Combinatorial geometry
Combinatorics -- Algebraic combinatorics -- Combinatorial aspects of representation theory. msc
Convex and discrete geometry -- Discrete geometry -- Arrangements of points, flats, hyperplanes. msc
Convex and discrete geometry -- Discrete geometry -- Oriented matroids. msc
Convex and discrete geometry -- Polytopes and polyhedra -- Combinatorial properties (number of faces, shortest paths, etc.). msc
CW complexes
Group theory and generalizations -- Semigroups -- Representation of semigroups; actions of semigroups on sets. msc
Group theory and generalizations -- Semigroups -- Semigroup rings, multiplicative semigroups of rings. msc
Partially ordered sets
Representations of algebras
Semigroups
TableOfContents Preface -- Acknowledgements -- Introduction -- Left Regular Bands, Hyperplane Arrangements, Oriented Matroids and Generalizations -- Regular CW Complexes and CW Posets -- Algebras -- Projective Resolutions and Global Dimension -- Quiver Presentations -- Quadratic and Koszul Duals -- Injective Envelopes for Hyperplane Arrangements, Oriented Matroids, CAT(0) Cube Complexes and COMs -- Enumeration of Cells for CW Left Regular Bands -- Cohomological Dimension
10.1. Cohomology of left regular bands -- Bibliography -- Nomenclature -- Index -- Back Cover
Cover -- Title page -- Preface -- Acknowledgements -- Chapter 1. Introduction -- Chapter 2. Left Regular Bands, Hyperplane Arrangements, Oriented Matroids and Generalizations -- 2.1. Green's relations and the structure of left regular bands -- 2.2. Free left regular bands and matroids -- 2.3. Free partially commutative left regular bands -- 2.4. Hyperplane arrangements and oriented matroids -- 2.5. Strong elimination systems, lopsided systems and COMs -- 2.6. Complex hyperplane arrangements -- Chapter 3. Regular CW Complexes and CW Posets -- 3.1. Simplicial complexes and order complexes of posets -- 3.2. Regular CW complexes and CW posets -- 3.3. Oriented interval greedoids -- 3.4. The topology of left regular bands -- 3.5. CAT(0) cube complexes -- 3.6. CAT(0) zonotopal complexes -- Chapter 4. Algebras -- 4.1. Rings and radicals -- 4.2. Finite dimensional algebras -- 4.3. Quivers and basic algebras -- 4.4. Gradings, quadratic algebras and Koszul algebras -- 4.5. The algebra of a left regular band -- 4.6. Existence of identity elements in left regular band algebras -- 4.7. Cartan invariants -- Chapter 5. Projective Resolutions and Global Dimension -- 5.1. Actions of left regular bands on CW posets -- 5.2. Projective resolutions -- 5.3. Ext and global dimension -- 5.4. Minimal projective resolutions -- Chapter 6. Quiver Presentations -- 6.1. A general result -- 6.2. A quiver presentation for CW left regular bands -- Chapter 7. Quadratic and Koszul Duals -- 7.1. Quadratic duals -- 7.2. Koszul duals -- Chapter 8. Injective Envelopes for Hyperplane Arrangements, Oriented Matroids, CAT(0) Cube Complexes and COMs -- 8.1. Generalities -- 8.2. Hyperplane arrangements -- 8.3. Oriented matroids -- Chapter 9. Enumeration of Cells for CW Left Regular Bands -- 9.1. Flag vectors -- 9.2. Cartan invariants -- Chapter 10. Cohomological Dimension
Title Cell complexes, poset topology and the representation theory of algebras arising in algebraic combinatorics and discrete geometry
URI https://www.ams.org/memo/1345/
https://cir.nii.ac.jp/crid/1130573251094305170
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6852914
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470469146
Volume 274
WOSCitedRecordID wos0000059468&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZo4UBPPEVhF1mIWykbx3n52qqAhLQgsaz2FtmOswrQpGqyq17558w4drpbkBAHLk7jWrbi-VrPTGa-IeS1ZkwakcRzrTiSarNsLkVRzLVUvORFwmRR2mIT6elpdnEhPrtinK0tJ5DWdbbbic1_FTX0gbAxdfYfxD1MCh3wGYQOLYgd2gONeLh1RAPohrMh4mbX__g3TWs60C43e6IlG1Foo19d0lHd5zLaF-1Y8wOs53aGlQldsovrqzRODWa0tKwiPbMzpvRuQeueXZpmbbqbEcXby8ZVWv_SXXkiJfTkgN4P1rTXmXUzO387fIeVN3282cLU3-Ta8YI7t0QYHrgl9u-bBvZZZDdpBnqTwYZlUQpqJZb8-OM_eiAwBHJt1g36GHjPPXlAkb1YsjBNk0BkIzJKE7DB775fffr6cXC2gY3Hw4DbxD63mvB8X351TzslghNc7QTXsvS77YRMZPsdzhw4jzq4G9VV9dvRbfWRswdkjDkqD8kdUz8ik_3Dt4_JT4QBHWDwhloQUA8CCnKjMJzeBgHtQUCbknoQUAcCWtV0AAG9BQI7mQcB9SB4Qs7frc6WH-auzsZcYoI-WFhGmsKYNNaJFGFcKsFFJiMuYy4KxUFNRO77QAq4REphkp0CNbZgJsx0VJb8KRnXTW2eESq4LpURzMDJEekwk6oomFZZGRUhDE-n5Ah2NLeRAG3eR0AEOW54jhs-Ja9ubHV-_cMN9JJKBJzsU3IMEsh1hS0DJSxOOajpGCOLjHPBlFAvm34hF-ecrxbLJItDmOP5X6Z4Qe7vQX1Ext32yhyTe_q6q9rtSwevXzEkiJA
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Cell+complexes%2C+poset+topology+and+the+representation+theory+of+algebras+arising+in+algebraic+combinatorics+and+discrete+geometry&rft.au=Margolis%2C+Stuart&rft.au=Saliola%2C+Franco+V.&rft.au=Steinberg%2C+Benjamin&rft.date=2022-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470450427&rft_id=info:doi/10.1090%2Fmemo%2F1345&rft.externalDocID=BC12776098
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470469146.jpg