Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume
We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of eigenfunctions of transfer operato...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | eBook Book |
| Language: | English |
| Published: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Edition: | 1 |
| Series: | Memoirs of the American Mathematical Society |
| Subjects: | |
| ISBN: | 9781470465452, 1470465450 |
| ISSN: | 0065-9266, 1947-6221 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We
then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of
eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume
and the dynamics of their geodesic flows. |
|---|---|
| AbstractList | We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We
then use these interpretations to establish explicit isomorphisms between spaces of automorphic forms, cohomology spaces and spaces of
eigenfunctions of transfer operators. These results show a deep relation between spectral entities of Hecke surfaces of infinite volume
and the dynamics of their geodesic flows. View the abstract. |
| Author | Bruggeman, Roelof Pohl, Anke Dorothea |
| Author_xml | – sequence: 1 givenname: Roelof surname: Bruggeman fullname: Bruggeman, Roelof – sequence: 2 givenname: Anke Dorothea surname: Pohl fullname: Pohl, Anke Dorothea |
| BackLink | https://cir.nii.ac.jp/crid/1130578968288909451$$DView record in CiNii |
| BookMark | eNpVkU1r3DAQhtUmKd1N99B_IGgPzcGNRpL1cUyXzQcEcgm9Gtk7TsTa0lay0_z82NmFUhhmDvPMvPC-S3IaYkBCvgL7Ccyyyx77eAmSiw9kZbUBqZnUpbDsI1mAlbpQnMPJv50qZclPyYIxVRaWK3VGlpxxwQRIaz6RJQjLheSyhM9klbOvWcmNkoKVC-I3_glDO4Zm8DFkGlv6mFzILSb6sMfkhpgydWFLr8Yh9jHtn31Dr2PqM21jorfY7HA68S48dUhvUhz371_uQuuDH5Cu40vsxh6_kLPWdRlXx3lOfl9vHte3xf3Dzd366r5wYI1-LRoDxjqlZO3aUrEGhMYWQTtUqLSrDc4lBLeudDXjoJjRWyF0s1UoJBPn5OLw2OUd_s3PsRty9dJhHeMuV_85OrE_Duw-xT8j5qF6xxoMQ3Jdtfm1FkxpsDCj3w9o8L5q_NwBJg-1scpwYyyzk8MT9u2o3ufqqAmsmpOt5mSrOVnxBiIFivg |
| ContentType | eBook Book |
| Copyright | Copyright 2023 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2023 American Mathematical Society |
| DBID | RYH |
| DEWEY | 512.7 |
| DOI | 10.1090/memo/1423 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470475390 1470475391 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470475390 EBC30671910 BD03747303 10_1090_memo_1423 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ABARN ABQPQ ADVEM AERYV AFOJC AHWGJ AJFER BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a1987x-c8189a664baf560c137efe17ae6e67ab8eb8eb3329a5ab0216087d337cd6e3403 |
| ISBN | 9781470465452 1470465450 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000061315&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 02:35:25 EST 2024 Wed Nov 26 03:15:18 EST 2025 Thu Jun 26 22:58:17 EDT 2025 Thu Aug 14 15:25:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | infinite covolume transfer operator period functions mixed cohomology cohomology automorphic forms Hecke triangle groups funnel forms |
| LCCN | 2023031498 |
| LCCallNum_Ident | QA241 .B784 2023 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a1987x-c8189a664baf560c137efe17ae6e67ab8eb8eb3329a5ab0216087d337cd6e3403 |
| Notes | Includes bibliographical references (p. 165-167) and index July 2023, volume 287, number 1423 (first of 6 numbers) |
| OCLC | 1392342451 |
| PQID | EBC30671910 |
| PageCount | 186 |
| ParticipantIDs | askewsholts_vlebooks_9781470475390 proquest_ebookcentral_EBC30671910 nii_cinii_1130578968288909451 ams_ebooks_10_1090_memo_1423 |
| PublicationCentury | 2000 |
| PublicationDate | 2023. |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023. |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2023 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssib052864305 ssj0002915004 ssj0008047 |
| Score | 2.6633077 |
| Snippet | We develop cohomological interpretations for several types of automorphic forms for Hecke triangle groups of infinite covolume. We
then use these... View the abstract. |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Number theory Number theory-Data processing |
| TableOfContents | Introduction
--
Preliminaries, properties of period functions, and some insights
--
Notations
--
Elements from hyperbolic geometry
--
Hecke triangle groups with infinite covolume
--
Automorphic forms
--
Principal series
--
Transfer operators and period functions
--
An intuition and some insights
--
Semi-analytic cohomology
--
Abstract cohomology spaces
--
Modules
--
Automorphic forms and cohomology
--
Invariant eigenfunctions via a group cohomology
--
Tesselation cohomology
--
Extension of cocycles
--
Surjectivity I: Boundary germs
--
Surjectivity II: From cocycles to funnel forms
--
Relation between cohomology spaces
--
Proof of Theorem D
--
Transfer operators and cohomology
--
The map from functions to cocycles
--
Real period functions and semi-analytic cocycles
--
Complex period functions and semi-analytic cohomology
--
Proof of Theorem E
--
Proofs of Theorems A and B, and a recapitulation
--
Parity
--
The triangle group in the projective general linear group
--
Odd and even funnel forms, cocycles, and period functions
--
Isomorphisms with parity
--
Complements and outlook
--
Fredholm determinant of the fast transfer operator
--
Outlook Cover -- Title page -- Chapter 1. Introduction -- Motivational background -- Aim of this monograph -- Acknowledgement -- Part 1. Preliminaries, properties of period functions, and some insights -- Chapter 2. Notations -- Chapter 3. Elements from hyperbolic geometry -- 3.1. Models and isometries -- 3.2. Classification of isometries -- 3.3. Cusps, funnels, limit set, and ordinary points -- 3.4. Geodesics, resonances, and the Selberg zeta function -- 3.5. Intervals and rounded neighborhoods -- Chapter 4. Hecke triangle groups with infinite covolume -- Chapter 5. Automorphic forms -- 5.1. Funnel forms of different types -- 5.2. Fourier expansion -- Chapter 6. Principal series -- 6.1. Regularity at infinity -- 6.2. Presheaves and sheaves -- 6.3. Holomorphic extensions -- Chapter 7. Transfer operators and period functions -- 7.1. Discretizations and transfer operators -- 7.2. Slow transfer operators -- 7.3. Period functions -- 7.4. Real and complex period functions -- 7.5. Fast transfer operators -- 7.6. One-sided averages -- 7.7. Convergence and meromorphic extension of fast transfer operators -- 7.8. Spaces of complex period functions -- Chapter 8. An intuition and some insights -- Part 2. Semi-analytic cohomology -- Chapter 9. Abstract cohomology spaces -- 9.1. Standard group cohomology -- 9.2. Cohomology on an invariant set -- 9.3. Relation to parabolic cohomology spaces -- Chapter 10. Modules -- 10.1. Modules of semi-analytic functions -- 10.2. Submodules of semi-analytic vectors -- 10.3. Conditions on cocycles -- 10.4. Cohomological interpretation of the singularity condition -- Part 3. Automorphic forms and cohomology -- Chapter 11. Invariant eigenfunctions via a group cohomology -- Chapter 12. Tesselation cohomology -- 12.1. Choice of a tesselation, and cohomology -- 12.2. Relation to group cohomology -- 12.3. Mixed cohomology spaces Chapter 13. Extension of cocycles -- Chapter 14. Surjectivity I: Boundary germs -- 14.1. Analytic boundary germs and semi-analytic modules -- 14.2. Cohomology classes attached to funnel forms -- 14.3. Representatives of boundary germs -- Chapter 15. Surjectivity II: From cocycles to funnel forms -- 15.1. From a cocycle to an invariant eigenfunction -- 15.2. A cocycle on an orbit of ordinary points -- 15.3. Isomorphisms -- Chapter 16. Relation between cohomology spaces -- Chapter 17. Proof of Theorem D -- From funnel forms to cocycle classes on the invariant set -- From cocycle classes on to funnel forms -- Proof of Theorem D -- Part 4. Transfer operators and cohomology -- Chapter 18. The map from functions to cocycles -- Chapter 19. Real period functions and semi-analytic cocycles -- Chapter 20. Complex period functions and semi-analytic cohomology -- Chapter 21. Proof of Theorem E -- Part 5. Proofs of Theorems A and B, and a recapitulation -- Part 6. Parity -- Chapter 22. The triangle group in the projective general linear group -- 22.1. Two actions of the projective general linear group -- 22.2. The triangle group -- Chapter 23. Odd and even funnel forms, cocycles, and period functions -- 23.1. Odd and even funnel forms -- 23.2. Odd and even cocycles -- 23.3. Odd and even period functions -- Chapter 24. Isomorphisms with parity -- Part 7. Complements and outlook -- Chapter 25. Fredholm determinant of the fast transfer operator -- Chapter 26. Outlook -- Bibliography -- Index of terminology -- List of notations -- Back Cover |
| Title | Eigenfunctions of Transfer Operators and Automorphic Forms for Hecke Triangle Groups of Infinite Covolume |
| URI | https://www.ams.org/memo/1423/ https://cir.nii.ac.jp/crid/1130578968288909451 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=30671910 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470475390 |
| Volume | 287 |
| WOSCitedRecordID | wos0000061315&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVo4UBPfIrCLjKIWxXWqdM4vu5SQEJaEFpgb5HjTrrRtvGqaVf9-cw4Hy3dA-KAVFlNFHmUeYn9xvG8YexdDhZpgTUY5IAOoonNgmySQZALkSmTzKimiC82oc7Pk8tL_a0pxVj5cgKqLJPtVt_8V6jxHIJNqbP_AHfXKZ7A_wg6tgg7tgeMuDtsFtZJWJPmqW5z29qzUliN3A34z-m1ILPZrN3SoYML65MXvSQDTkD4Qo-oikc5X8DIp3vUgrRlXhAzHVlXj2W7EH4zn0OzhPrdwQIv_vW-G2zdVb0BoLyG_bWFsTxYW9h9NOokZEmixHUaJV0gGkZKkDJbrUZ7Z1gWmvYxLmHpfH5_nWF8oHN9-oGkcHDAkT3WUzEG0vc_Tb_--NKtmI01klcR-ey8xlon2tVab7WjtDghaydky2voVgM2MNU1Thw4qazxqFcWxZ3515OKi0esT4kmj9k9KJ-wwe7mq6es-BNL7nLeYsk7LDliyfew5B5LarnHkrdY8hpL6qXFkrdYPmM_P04vzj4HTVGMwND60DawSLG0ieMoMznSVRtKBTmEykAMsTJZAvSTcqzNxGRI4WKRqJmUys5ikJGQz1m_dCW8YFxYI-KxCS2yyEhChj0Kq8UM8EWVSF2G7Ag9l_rP9lVab1cQKTk2JccO2ds9l6a3i-bCFhGMhLUYsmP0dGoLakNkTDhF6Bjj_EQLHU3QxpsWg9pQsyk5nZ6eUTgbIp99-Zc-XrGHu6f3iPXXqw0cswf2dl1Uq9fNc_Qb9-Zpmg |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Eigenfunctions+of+transfer+operators+and+automorphic+forms+for+Hecke+triangle+groups+of+infinite+covolume&rft.au=Bruggeman%2C+Roelof+W.&rft.au=Pohl%2C+Anke&rft.date=2023-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470465452&rft_id=info:doi/10.1090%2Fmemo%2F1423&rft.externalDocID=BD03747303 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470475390.jpg |

