Free Energy and Equilibrium States for Families of Interval Maps
We study continuity, and lack thereof, of thermodynamical properties for one-dimensional dynamical systems. Under quite general hypotheses, the free energy is shown to be almost upper-semicontinuous: some normalised component of a limit measure will have free energy at least that of the limit of the...
Uloženo v:
| Hlavní autoři: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2023
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 9781470461263, 1470461269 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Obsah:
- Introduction -- Topological structures -- Measures and entropy -- Light limit measures and upper-semicontinuity of metric entropy -- Non-positive Schwarzian derivative -- Almost upper-semicontinuity of the free energy -- Katok theory, pressure and exponential tails -- Instability for Collet-Eckmann maps -- Positive entropy does not imply statistical stability

