Collective classification in social networks

Classification is one of the most studied subjects in machine learning. Most classification methods that were developed this last decade either account for structure (interactions, relationships) or attributes (text, numerical, etc). This leads to ignoring significant patterns in a dataset that coul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) S. 827 - 835
Hauptverfasser: Jaafor, Omar, Birregah, Babiga
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: New York, NY, USA ACM 31.07.2017
Schriftenreihe:ACM Conferences
Schlagworte:
ISBN:1450349935, 9781450349932
ISSN:2473-991X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Classification is one of the most studied subjects in machine learning. Most classification methods that were developed this last decade either account for structure (interactions, relationships) or attributes (text, numerical, etc). This leads to ignoring significant patterns in a dataset that could only be captured by analyzing the features of an item and its interactions. Collective classification methods use both structure and attributes, often by aggregating data from neighbors of a node and learning a model on the aggregated data. In social networks, the degree distribution of nodes follows a power law where few nodes have many neighbors. High degree nodes have incoming links from low degree nodes of different classes and many nodes have very few edges. Hence, using only local structure may lead to poor predictions. Also, many social networks allow for different types of interactions (retweet, reply, like, etc.) that affect classification differently. This article proposes a collective classification method that makes use of the structure of a network to determine its neighbors. It then presents experiments aimed at detecting jihadi propagandists and malware distributors on social networks.
AbstractList Classification is one of the most studied subjects in machine learning. Most classification methods that were developed this last decade either account for structure (interactions, relationships) or attributes (text, numerical, etc). This leads to ignoring significant patterns in a dataset that could only be captured by analyzing the features of an item and its interactions. Collective classification methods use both structure and attributes, often by aggregating data from neighbors of a node and learning a model on the aggregated data. In social networks, the degree distribution of nodes follows a power law where few nodes have many neighbors. High degree nodes have incoming links from low degree nodes of different classes and many nodes have very few edges. Hence, using only local structure may lead to poor predictions. Also, many social networks allow for different types of interactions (retweet, reply, like, etc.) that affect classification differently. This article proposes a collective classification method that makes use of the structure of a network to determine its neighbors. It then presents experiments aimed at detecting jihadi propagandists and malware distributors on social networks.
Author Birregah, Babiga
Jaafor, Omar
Author_xml – sequence: 1
  givenname: Omar
  surname: Jaafor
  fullname: Jaafor, Omar
  email: omar.jaafor@utt.fr
  organization: Charles Delaunay Institute, University of Technology of Troyes, Troyes, France
– sequence: 2
  givenname: Babiga
  surname: Birregah
  fullname: Birregah, Babiga
  email: babiga.birregah@utt.fr
  organization: Charles Delaunay Institute, University of Technology of Troyes, Troyes, France
BookMark eNqNkM1LxDAQxeMXuLvu2YOXHj3YmmmSJjlK8QsWvCh4C0maQNxuI01R_O_Nsj14FGZ4ML83w_CW6HSIg0PoEnAFQNktAcC4ZtVeoRZHaJmnmFApCTtGi5pyUkoJ7yd_wTlap_SB8yKI3GSBbtrY985O4csVttcpBR-snkIcijAUKdqg-2Jw03cct-kCnXndJ7eedYXeHu5f26dy8_L43N5tSg2ymUpPjRTSW0Lza0Abw7uaEW4991zXVJBOct9YL0E6IzpNMRgiTeOZANbhjqzQ1eFucM6pzzHs9PijJG5y8UyvD1TbnTIxbpMCrPahqDkUNYeSrdU_rcqMwXnyCyUSXg0
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3110025.3110128
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Sociology & Social History
EISBN 1450349935
9781450349932
EISSN 2473-991X
Editor Diesner, Jana
Ferrari, Elena
Xu, Guandong
Editor_xml – sequence: 1
  givenname: Jana
  surname: Diesner
  fullname: Diesner, Jana
– sequence: 2
  givenname: Elena
  surname: Ferrari
  fullname: Ferrari, Elena
– sequence: 3
  givenname: Guandong
  surname: Xu
  fullname: Xu, Guandong
EndPage 835
ExternalDocumentID 9069067
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
LHSKQ
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a196t-f4b989fc34101146b7d2537cf7f7a2483d97f6cf919eb8da401b39b6f5815d0d3
IEDL.DBID RIE
ISBN 1450349935
9781450349932
IngestDate Tue Nov 04 05:04:44 EST 2025
Thu Jul 10 05:53:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Keywords Semi-supervised classification
unbalanced data
collective classification
surveillance
multi-layer networks
social networks
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel DirectLink
MeetingName ASONAM '17: Advances in Social Networks Analysis and Mining 2017
MergedId FETCHMERGED-LOGICAL-a196t-f4b989fc34101146b7d2537cf7f7a2483d97f6cf919eb8da401b39b6f5815d0d3
PageCount 9
ParticipantIDs ieee_primary_9069067
acm_books_10_1145_3110025_3110128
acm_books_10_1145_3110025_3110128_brief
PublicationCentury 2000
PublicationDate 20170731
2017-July
PublicationDateYYYYMMDD 2017-07-31
2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 20170731
  day: 31
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
PublicationTitleAbbrev ASONAM
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002180213
ssj0001615928
Score 1.6542788
Snippet Classification is one of the most studied subjects in machine learning. Most classification methods that were developed this last decade either account for...
SourceID ieee
acm
SourceType Publisher
StartPage 827
SubjectTerms collective classification
Human-centered computing
Human-centered computing -- Collaborative and social computing
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools -- Social networking sites
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing theory, concepts and paradigms
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing theory, concepts and paradigms -- Social media
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing theory, concepts and paradigms -- Social networks
Human-centered computing -- Human computer interaction (HCI)
Human-centered computing -- Human computer interaction (HCI) -- Interaction paradigms
Human-centered computing -- Human computer interaction (HCI) -- Interaction paradigms -- Web-based interaction
Information systems
Information systems -- Information systems applications
Information systems -- Information systems applications -- Collaborative and social computing systems and tools
Information systems -- Information systems applications -- Collaborative and social computing systems and tools -- Social networking sites
Information systems -- Information systems applications -- Data mining
Information systems -- World Wide Web
Information systems -- World Wide Web -- Web applications
Information systems -- World Wide Web -- Web applications -- Social networks
multi-layer networks
Networks
Networks -- Network types
Networks -- Network types -- Overlay and other logical network structures
Networks -- Network types -- Overlay and other logical network structures -- Online social networks
Semi-supervised classification
social networks
surveillance
unbalanced data
Title Collective classification in social networks
URI https://ieeexplore.ieee.org/document/9069067
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4MndZu4-UEE0cu6LWmzJGdxeBo7KOxWkjSBHexkH4L_vXlp3RAE8dQPSimvTX_v6_d7AHfUZNZrhqVBp5OMWp8oK1gIVZwxgiqvTRaHTYjZTC4Wat6AwZ4L45yLzWduiLuxll-s7A5TZSMVZXVFE5pCTCqu1iGfEqBZ1a40HjOUNqNpreZDMz5KUR2N8SFuKYvSqvbtx1CViCnTk_89zSl0D-Q8Mt_Dzhk0XNmGk-_pDKRerG3o77ko5J5ULFxSiYJ8dmAQEwbxX0csOtDYMRRfElmWpEqkk7JqEd904XX69PL4nNSDExIdFtQ28ZlRUnkbEArjnYkRBeMpChB5oVkm00IJP7FeUeWMLHSIsUyqzMRzSXkxLtJzaJWr0l0AcWbssDKqwy2C5yWNZFpyPy60V2nGXQ9ugxVzjAg2eUVy5nlt6by2dA8e_rwmN-ul8z3ooJ3z90ppI69N3P_99CUcMwTZ2Dx7Ba3teueu4ch-bJeb9U38PL4Adhe0Vg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKejTdJu4eYsg-rJuTZqszbM4Js6xhwl7C0mawB7sZBfBf2-T1g1BEJ96oZRy2vQ7t-87ALdYUW0lcaVBIwOKtQ24jkkeqhilYsytVNQPm4jH42Q245MKdLZcGGOMbz4zXbfra_npQm9cqqzHvaxuvAf7jFISFmytXUYlB2deOtPumDhxMxyVej6Ysl7k9NEI67otJl5cVb_9GKviUWVQ-9_zHENzR89Dky3wnEDFZHWofc9nQOVyrUN7y0ZBd6jg4aJCFuSzAR2fMvB_O6SdC-16hvxrQvMMFal0lBVN4qsmvA4epw_DoBydEMh8Sa0DSxVPuNU5RrmIp6_ilLDISRDZWBKaRCmPbV9bjrlRSSrzKEtFXPUtSzBLwzQ6hWq2yMwZIKNC42qjMr9F7nslKiEyYTZMpeURZaYFN7kVhYsJVqKgOTNRWlqUlm7B_Z_XCLWcG9uChrOzeC-0NkRp4vbvp6_hcDh9GYnR0_j5HI6Ig1zfSnsB1fVyYy7hQH-s56vllf9UvgALHLed
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+2017&rft.atitle=Collective+classification+in+social+networks&rft.au=Jaafor%2C+Omar&rft.au=Birregah%2C+Babiga&rft.series=ACM+Conferences&rft.date=2017-07-31&rft.pub=ACM&rft.isbn=1450349935&rft.spage=827&rft.epage=835&rft_id=info:doi/10.1145%2F3110025.3110128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/sc.gif&client=summon&freeimage=true