The Web as a Source of Evidence for Filtering Candidate Answers to Natural Language Questions
Identifying and extracting named entities from web pages has been the subject of many researches. In this paper, we propose and evaluate some new unsupervised language modeling approaches to determine the membership level of a candidate answer, a named entity, to a natural language question to a ver...
Uloženo v:
| Vydáno v: | 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Ročník 1; s. 63 - 66 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2011
|
| Témata: | |
| ISBN: | 9781457713736, 145771373X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Identifying and extracting named entities from web pages has been the subject of many researches. In this paper, we propose and evaluate some new unsupervised language modeling approaches to determine the membership level of a candidate answer, a named entity, to a natural language question to a very fine-grained conceptual class of entity. We propose to address this issue by using the Web or DBPedia hierarchy as sources of evidence. Then, this level of membership can be used to improve the ranking of candidate answers in a question-answering task. Lastly, we present the results we obtained by participating in TREC 2010 Entity track. |
|---|---|
| ISBN: | 9781457713736 145771373X |
| DOI: | 10.1109/WI-IAT.2011.226 |

