Predicting The California Bearing Ratio Applying The Automated Framework Of Regression Model
The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial aspect of flexible pavement design. However, the conventional laboratory determination of CBR often demands considerable human resources and...
Uloženo v:
| Vydáno v: | Journal of Applied Science and Engineering Ročník 28; číslo 7; s. 1435 - 1447 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
淡江大學
01.07.2025
Tamkang University Press |
| Témata: | |
| ISSN: | 2708-9967, 2708-9975 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial aspect of flexible pavement design. However, the conventional laboratory determination of CBR often demands considerable human resources and time. As a result, there is a need to explore alternative methods, such as developing dependable models to estimate the CBR of modified expansive soil subgrade. In this research, a machine learning (ML) model, specifically a Random Forest (RF) machine model, was developed to forecast the CBR of an expansive soil subgrade mixed with sawdust ash, ordinary Portland cement, and quarry dust. The models' performance was assessed using several error indices, and the findings revealed that the RFAO model exhibited superior predictive capability when compared to the RFDA and RFSM machine models. Specifically, the R2 values for the training and testing data for the RFAO model were 0.9952 and 0.9988, respectively. In addition, RFAO obtained the most suitable RMSE equal to 0.4878. The RFAO model generally indicated an acceptable predictive ability and more desirable generalization ability than the other developed models. |
|---|---|
| AbstractList | The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial aspect of flexible pavement design. However, the conventional laboratory determination of CBR often demands considerable human resources and time. As a result, there is a need to explore alternative methods, such as developing dependable models to estimate the CBR of modified expansive soil subgrade. In this research, a machine learning (ML) model, specifically a Random Forest (RF) machine model, was developed to forecast the CBR of an expansive soil subgrade mixed with sawdust ash, ordinary Portland cement, and quarry dust. The models’ performance was assessed using several error indices, and the findings revealed that the RFAO model exhibited superior predictive capability when compared to the RFDA and RFSM machine models. Specifically, the R2 values for the training and testing data for the RFAO model were 0.9952 and 0.9988, respectively. In addition, RFAO obtained the most suitable RMSE equal to 0.4878. The RFAO model generally indicated an acceptable predictive ability and more desirable generalization ability than the other developed models. |
| Author | Yu Yun Pan Hu Jing Jin |
| Author_xml | – sequence: 1 fullname: Pan Hu – sequence: 2 fullname: Jing Jin – sequence: 3 fullname: Yu Yun |
| BookMark | eNo9kEtPHDEQhC0EEgT4C9EcyWGX9mP8OG5W4SGRgBDcIlk9dnvxZna88g5C_HsGSHKqUqn0dau-sP2hDMTYVw5zzS2cr3FHcwGiBeOFPTPf5gDQ7rEjYcDOnDPt_n-vzSE73e1yB1NbSunEEft9VynmMOZh1Tw8UbPEPqdSh4zNd8L6Ht_jmEuz2G7713-txfNYNjhSbC4qbuil1D_NbWruaVVpOlCG5meJ1J-wg4T9jk7_6jF7vPjxsLya3dxeXi8XNzPkrh1nCriJrQ7QmU50SkQQAJSiRSCI1gEgodRWqkmCsZREx4PsgoTIMQR5zK4_ubHg2m9r3mB99QWz_whKXXmsYw49eSDkukuKuE3KJe6MVJ1QhlTrTHBpYslPFuaax-zX5bkO0_Oetxq0ttr_-phbgwKQzsP73vINWjl1zQ |
| ContentType | Journal Article |
| DBID | 188 DOA |
| DOI | 10.6180/jase.202507_28(7).0005 |
| DatabaseName | Chinese Electronic Periodical Services (CEPS) DOAJ Open Access Full Text |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2708-9975 |
| EndPage | 1447 |
| ExternalDocumentID | oai_doaj_org_article_0ea16bf4e18f49f19734b247e4597c9f 15606686_N202506040039_00005 |
| GroupedDBID | 188 2UF ALMA_UNASSIGNED_HOLDINGS CAHYU CNMHZ CVCKV AAFWJ AFPKN GROUPED_DOAJ |
| ID | FETCH-LOGICAL-a195t-4017d56c0b7b2b42d0200efd8a0e0d8900aea36834ea3c78ef2b1c3bc30d1acc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001373958900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2708-9967 |
| IngestDate | Fri Oct 03 12:51:02 EDT 2025 Tue Aug 19 00:40:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Dynamic Arithmetic Optimization Algorithm Slime Mould Algorithm California bearing ratio Aquila Optimizer Random Forest |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a195t-4017d56c0b7b2b42d0200efd8a0e0d8900aea36834ea3c78ef2b1c3bc30d1acc3 |
| OpenAccessLink | https://doaj.org/article/0ea16bf4e18f49f19734b247e4597c9f |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0ea16bf4e18f49f19734b247e4597c9f airiti_journals_15606686_N202506040039_00005 |
| PublicationCentury | 2000 |
| PublicationDate | 20250701 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Applied Science and Engineering |
| PublicationTitle_FL | Journal of Applied Science and Engineering |
| PublicationYear | 2025 |
| Publisher | 淡江大學 Tamkang University Press |
| Publisher_xml | – name: 淡江大學 – name: Tamkang University Press |
| SSID | ssib050733392 ssib053285227 ssj0002909514 |
| Score | 2.2957292 |
| Snippet | The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial... |
| SourceID | doaj airiti |
| SourceType | Open Website Publisher |
| StartPage | 1435 |
| SubjectTerms | aquila optimizer california bearing ratio dynamic arithmetic optimization algorithm random forest slime mould algorithm |
| Title | Predicting The California Bearing Ratio Applying The Automated Framework Of Regression Model |
| URI | https://www.airitilibrary.com/Article/Detail/15606686-N202506040039-00005 https://doaj.org/article/0ea16bf4e18f49f19734b247e4597c9f |
| Volume | 28 |
| WOSCitedRecordID | wos001373958900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2708-9975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002909514 issn: 2708-9967 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2708-9975 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050733392 issn: 2708-9967 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA4iFlqIT3yTwkLBxbw2j1LFw0IPEQULYUmyiShyJ-cp2PjbnbmcelY2NrsQlhBmksw3OzPfELKbMMyYmauwBKRSJqbKW5UrHpL3NkuuC4nruel27e2tu5xo9YU5YYUeuAjukCXPdcgqcZuVy9wZqYJQJimAwtFlvH2ZcRPOFOykGlsRyp94YS2FBaBhvv--CIfQAkPOwjA48U6bUj6ssfT5EQwIuI6ADkwj7J7ZR5ZDsD4z_gGZhn7R-4_sUGeBzI8BJD0qC18kU6m3ROYmaAWXyd3lAMMvmNBMAd_Rn_oregwbG4evUCEUIej711dHr8M-wNfU0s5XwhbtZ3qV7kuqbI9i37SnFXLTOb0-OavGXRQqz109BAeRm7bWkQUTRFCiBYDIUm6tZ4m11jHmk5faSgWvaGzKIvAoQ5Ss5T5GuUqme_1eWiO0dpGDTkOwrVHaiwBzwmWaWVRGZW3XyUGRUDM-CC8NFmprbXXTHclT450hHYa8Wb1OjlGOzXPh1WiQ6Xo0APpvxvpv_tL_xn9MsklmcXklDXeLTA8Hr2mbzMS34cPLYGe0teB58XH6CXynzGc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+California+Bearing+Ratio+Applying+the+Automated+Framework+of+Regression+Model&rft.jtitle=Journal+of+Applied+Science+and+Engineering&rft.au=Pan+Hu&rft.au=Jing+Jin&rft.au=Yu+Yun&rft.date=2025-07-01&rft.pub=Tamkang+University+Press&rft.issn=2708-9967&rft.eissn=2708-9975&rft.volume=28&rft.issue=7&rft.spage=1435&rft.epage=1447&rft_id=info:doi/10.6180%2Fjase.202507_28%287%29.0005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0ea16bf4e18f49f19734b247e4597c9f |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F15606686-c.jpg |