Predicting The California Bearing Ratio Applying The Automated Framework Of Regression Model

The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial aspect of flexible pavement design. However, the conventional laboratory determination of CBR often demands considerable human resources and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Science and Engineering Jg. 28; H. 7; S. 1435 - 1447
Hauptverfasser: Pan Hu, Jing Jin, Yu Yun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 淡江大學 01.07.2025
Tamkang University Press
Schlagworte:
ISSN:2708-9967, 2708-9975
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial aspect of flexible pavement design. However, the conventional laboratory determination of CBR often demands considerable human resources and time. As a result, there is a need to explore alternative methods, such as developing dependable models to estimate the CBR of modified expansive soil subgrade. In this research, a machine learning (ML) model, specifically a Random Forest (RF) machine model, was developed to forecast the CBR of an expansive soil subgrade mixed with sawdust ash, ordinary Portland cement, and quarry dust. The models' performance was assessed using several error indices, and the findings revealed that the RFAO model exhibited superior predictive capability when compared to the RFDA and RFSM machine models. Specifically, the R2 values for the training and testing data for the RFAO model were 0.9952 and 0.9988, respectively. In addition, RFAO obtained the most suitable RMSE equal to 0.4878. The RFAO model generally indicated an acceptable predictive ability and more desirable generalization ability than the other developed models.
AbstractList The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial aspect of flexible pavement design. However, the conventional laboratory determination of CBR often demands considerable human resources and time. As a result, there is a need to explore alternative methods, such as developing dependable models to estimate the CBR of modified expansive soil subgrade. In this research, a machine learning (ML) model, specifically a Random Forest (RF) machine model, was developed to forecast the CBR of an expansive soil subgrade mixed with sawdust ash, ordinary Portland cement, and quarry dust. The models’ performance was assessed using several error indices, and the findings revealed that the RFAO model exhibited superior predictive capability when compared to the RFDA and RFSM machine models. Specifically, the R2 values for the training and testing data for the RFAO model were 0.9952 and 0.9988, respectively. In addition, RFAO obtained the most suitable RMSE equal to 0.4878. The RFAO model generally indicated an acceptable predictive ability and more desirable generalization ability than the other developed models.
Author Yu Yun
Pan Hu
Jing Jin
Author_xml – sequence: 1
  fullname: Pan Hu
– sequence: 2
  fullname: Jing Jin
– sequence: 3
  fullname: Yu Yun
BookMark eNo9kEtPHDEQhC0EEgT4C9EcyWGX9mP8OG5W4SGRgBDcIlk9dnvxZna88g5C_HsGSHKqUqn0dau-sP2hDMTYVw5zzS2cr3FHcwGiBeOFPTPf5gDQ7rEjYcDOnDPt_n-vzSE73e1yB1NbSunEEft9VynmMOZh1Tw8UbPEPqdSh4zNd8L6Ht_jmEuz2G7713-txfNYNjhSbC4qbuil1D_NbWruaVVpOlCG5meJ1J-wg4T9jk7_6jF7vPjxsLya3dxeXi8XNzPkrh1nCriJrQ7QmU50SkQQAJSiRSCI1gEgodRWqkmCsZREx4PsgoTIMQR5zK4_ubHg2m9r3mB99QWz_whKXXmsYw49eSDkukuKuE3KJe6MVJ1QhlTrTHBpYslPFuaax-zX5bkO0_Oetxq0ttr_-phbgwKQzsP73vINWjl1zQ
ContentType Journal Article
DBID 188
DOA
DOI 10.6180/jase.202507_28(7).0005
DatabaseName 華藝電子期刊
Open Access资源_DOAJ
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2708-9975
EndPage 1447
ExternalDocumentID oai_doaj_org_article_0ea16bf4e18f49f19734b247e4597c9f
15606686_N202506040039_00005
GroupedDBID 188
2UF
ALMA_UNASSIGNED_HOLDINGS
CAHYU
CNMHZ
CVCKV
AAFWJ
AFPKN
GROUPED_DOAJ
ID FETCH-LOGICAL-a195t-4017d56c0b7b2b42d0200efd8a0e0d8900aea36834ea3c78ef2b1c3bc30d1acc3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001373958900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2708-9967
IngestDate Fri Oct 03 12:51:02 EDT 2025
Tue Aug 19 00:40:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Dynamic Arithmetic Optimization Algorithm
Slime Mould Algorithm
California bearing ratio
Aquila Optimizer
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a195t-4017d56c0b7b2b42d0200efd8a0e0d8900aea36834ea3c78ef2b1c3bc30d1acc3
OpenAccessLink https://doaj.org/article/0ea16bf4e18f49f19734b247e4597c9f
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0ea16bf4e18f49f19734b247e4597c9f
airiti_journals_15606686_N202506040039_00005
PublicationCentury 2000
PublicationDate 20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 20250701
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Applied Science and Engineering
PublicationTitle_FL Journal of Applied Science and Engineering
PublicationYear 2025
Publisher 淡江大學
Tamkang University Press
Publisher_xml – name: 淡江大學
– name: Tamkang University Press
SSID ssib050733392
ssib053285227
ssj0002909514
Score 2.2958255
Snippet The construction of flexible pavement on expansive soil subgrade necessitates the precise determination of the California Bearing Ratio (CBR) value, a crucial...
SourceID doaj
airiti
SourceType Open Website
Publisher
StartPage 1435
SubjectTerms aquila optimizer
california bearing ratio
dynamic arithmetic optimization algorithm
random forest
slime mould algorithm
Title Predicting The California Bearing Ratio Applying The Automated Framework Of Regression Model
URI https://www.airitilibrary.com/Article/Detail/15606686-N202506040039-00005
https://doaj.org/article/0ea16bf4e18f49f19734b247e4597c9f
Volume 28
WOSCitedRecordID wos001373958900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2708-9975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002909514
  issn: 2708-9967
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2708-9975
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050733392
  issn: 2708-9967
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPOhBfOKbHDwouJhssnkcq7R40CKi0oOwbLKJVKSVPgQv_nZndltbT1687EIIIcwkmS-ZmW8IOQGboEtmfaKUlonUWiUu8y5hpQmGc-9k9eD2dKM7HdPt2ruFUl8YE1bTA9eCu2Ch4MpFGbiJ0kZutZAulTpIgMLeRjx9mbYLlylYSRmWIhRzf2EmUgNAQ_-8vqQWoQW6nFPNYMdbpev0YYWpz69gQODqCOhA56k51WfIcgjWZ7noIdPQL3r_yg6118naFEDSZj3xDbIU-ptkdYFWcIs83w3R_YIBzRTwHZ3nX9FLWNjYfI8KoQhBP2e9mpPxAOBrKGl7FrBFB5Heh5c6VLZPsW7a2zZ5bLcerq6TaRWFpOA2G8MFkesyU5457VIn0xIAIguxNAULoBHLWBEKoYyQ8PPahJg67oXzgpW88F7skEZ_0A-7hArY8NEbAFk-SO-E9cFz40xUweJge-S8llA-3QijHBO1lTIq71TyVHhmCIsub5btkUuUY_5e82rkyHRdNYD-86n-87_0v_8fgxyQFZxeHYZ7SBrj4SQckWX_Me6NhsfV0oLv7VfrG0rYzNE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+The+California+Bearing+Ratio+Applying+The+Automated+Framework+Of+Regression+Model&rft.jtitle=%E6%B7%A1%E6%B1%9F%E7%90%86%E5%B7%A5%E5%AD%B8%E5%88%8A&rft.au=Pan+Hu&rft.au=Jing+Jin&rft.au=Yu+Yun&rft.date=2025-07-01&rft.pub=%E6%B7%A1%E6%B1%9F%E5%A4%A7%E5%AD%B8&rft.issn=2708-9967&rft.volume=28&rft.issue=7&rft.spage=1435&rft.epage=1447&rft_id=info:doi/10.6180%2Fjase.202507_28%287%29.0005&rft.externalDocID=15606686_N202506040039_00005
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F15606686-c.jpg