Deep Learning Models for Medical Imaging

Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Santosh, K. C, Das, Nibaran, Ghosh, Swarnendu
Format: E-Book
Sprache:Englisch
Veröffentlicht: Chantilly Elsevier Science & Technology 2021
Academic Press
Ausgabe:1
Schriftenreihe:Primers in Biomedical Imaging Devices and Systems
Schlagworte:
ISBN:9780128235041, 0128235047
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments.
AbstractList Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments.
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
Author Das, Nibaran
Ghosh, Swarnendu
Santosh, K. C
Author_xml – sequence: 1
  fullname: Santosh, K. C
– sequence: 2
  fullname: Das, Nibaran
– sequence: 3
  fullname: Ghosh, Swarnendu
BookMark eNpVj0tPwzAMgIN4CDb2HyouwCEjTppHj2wMmLSJC-JaJakzxkozmgF_nwg4gH2w7O-zJQ_IQRc7JOQM2BgYqKtJpQ1lFDg1XEhWUhizHJzqPTLKjAHPQEkm9__0WYQjMgCutFZK6OqYjFJ6yYsCSiFKdkIubhC3xQJt3627VbGMDbapCLEvltisvW2L-atdZXRKDoNtE45-65A83c4ep_d08XA3n14vqIVKmpJyLjwGUxoEExruvJPYhMoZITQ3QVopGg-mBOt1YC7ksWc5rQNXCavFkFz-HLZpg5_pOba7VH-06GLcpPrfr9k9_3G3fXx7x7SrvzWP3a63bT2bTJXmoIUSX7FfWX0
ContentType eBook
DEWEY 616.0754
DOI 10.1016/B978-0-12-823504-1.00002-7
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9780128236505
0128236507
Edition 1
ExternalDocumentID 9780128236505
EBC6721736
GroupedDBID 38.
AAAAS
AABBV
AAFKH
AAIWD
AAKGN
AAKJW
AAKZG
AALRI
AANYM
AAWMN
AAXUO
ABGWT
ABIWA
ABLXK
ABQQC
ABRSK
ABWNX
ACDGK
ADBND
AEBYP
AECLD
AEHEP
AEYWH
AFAAC
AFQEX
AJBBN
ALMA_UNASSIGNED_HOLDINGS
ALOLN
ANZXX
APVFW
ATDNW
AZTOX
BBABE
BGHEG
BSWCA
CZZ
HGY
L7C
SDK
SRW
UE6
AAYWO
ADDBX
ALBLE
ID FETCH-LOGICAL-a19584-223cef848e18fd2bcb5edf9b833728f5a53dc1841ac7f0bf337c0c0cab1b93a73
ISBN 9780128235041
0128235047
IngestDate Thu Apr 17 09:06:01 EDT 2025
Wed Sep 03 03:16:25 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident R859.7.A78 S268 2021
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a19584-223cef848e18fd2bcb5edf9b833728f5a53dc1841ac7f0bf337c0c0cab1b93a73
OCLC 1267766379
PQID EBC6721736
PageCount 172
ParticipantIDs askewsholts_vlebooks_9780128236505
proquest_ebookcentral_EBC6721736
PublicationCentury 2000
PublicationDate 2021
2021-09-07
PublicationDateYYYYMMDD 2021-01-01
2021-09-07
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Chantilly
PublicationPlace_xml – name: Chantilly
PublicationSeriesTitle Primers in Biomedical Imaging Devices and Systems
PublicationYear 2021
Publisher Elsevier Science & Technology
Academic Press
Publisher_xml – name: Elsevier Science & Technology
– name: Academic Press
SSID ssj0003143340
Score 2.4020538
Snippet Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two...
SourceID askewsholts
proquest
SourceType Aggregation Database
Publisher
SubjectTerms Artificial intelligence
Artificial intelligence-Medical applications
Diagnostic imaging
TableOfContents Front Cover -- Deep Learning Models for Medical Imaging -- Copyright -- Contents -- List of figures -- List of tables -- Authors -- KC Santosh -- Nibaran Das -- Swarnendu Ghosh -- Foreword -- Preface -- Acronyms -- 1 Introduction -- 1.1 Background -- 1.2 Machine learning and its types -- 1.3 Evolution of machine learning -- 1.3.1 Rule-based learning -- 1.3.2 Feature-based learning -- 1.3.3 Representation learning -- 1.4 Basics to deep learning -- 1.4.1 The rise of cybernetics -- 1.4.2 The connectionist movement -- 1.4.3 The onset of deep learning -- 1.4.4 Motivation: deep learning -- 1.5 Importance of deep learning -- 1.6 Deep learning in medical imaging: a review -- 1.6.1 Medical imaging scope -- 1.6.2 Medical imaging data -- 1.6.3 Applications: deep learning in medical imaging -- 1.7 Scope of the book -- References -- 2 Deep learning: a review -- 2.1 Background -- 2.2 Artificial neural networks -- 2.2.1 The neuron -- 2.2.2 Activation functions -- 2.2.3 Multilayer feed forward neural network -- 2.2.4 Training neural networks by back-propagation -- 2.2.5 Optimization -- 2.2.5.1 Objective functions -- Mean squared error -- Cross-entropy measures -- 2.2.5.2 Optimization techniques -- Stochastic gradient descent -- Momentum -- Adaptive learning rates -- 2.2.6 Regularization -- 2.3 Convolutional neural networks -- 2.3.1 Feature extraction using convolutions -- 2.3.2 Subsampling -- 2.3.3 Effect of nonlinearity on activation maps -- 2.3.4 Layer design -- 2.3.5 Output layer -- 2.4 Encoder-decoder architecture -- 2.4.1 Unsupervised learning in CNNs -- 2.4.2 Image-to-image translation -- 2.4.3 Localization -- 2.4.4 Multiscale feature propagation -- References -- 3 Deep learning models -- 3.1 Deep learning models -- 3.1.1 Learning different objectives -- 3.1.2 Network structure for CNNs -- 3.1.3 Types of models based on learning strategies
3.2 Elements in deep learning pipeline -- 3.2.1 Data preprocessing -- 3.2.2 Model selection -- 3.2.3 Model validation and hyperparameter tuning -- 3.3 Evolution of deep learning models and applications -- 3.3.1 Classification -- 3.3.2 Localization -- 3.3.3 Segmentation -- References -- 4 Cytology image analysis -- 4.1 Background -- 4.2 Cytology: a brief overview -- 4.3 Types of cytology -- 4.4 Cytology slide preparation -- 4.4.1 Aspiration cytology -- 4.4.2 Exfoliative cytology -- 4.4.3 Abrasive cytology -- 4.4.4 Specimen collection -- 4.4.5 Slide preparation -- 4.4.6 Fixation techniques and staining protocol -- 4.5 Cytological process and digitization -- 4.6 Cervical cell cytology -- 4.6.1 Modalities of cervical specimen collection -- 4.6.2 Characteristics of cytomorphology of malignant cells -- 4.7 Experiments -- 4.7.1 Dataset -- 4.7.2 Experimental setup and protocols -- 4.7.2.1 Transfer learning: a quick overview -- 4.7.3 Results and discussion -- 4.7.3.1 Results with or without using transfer learning -- 4.7.3.2 Results with data augmentation -- 4.7.3.3 Results using ensemble of classifiers -- 4.7.4 Summary -- References -- 5 COVID-19: prediction, screening, and decision-making -- 5.1 Background -- 5.2 Predictive modeling and infectious disease outbreaks -- 5.3 Need of medical imaging tools for COVID-19 outbreak screening -- 5.4 Deep neural networks for COVID-19 screening -- 5.4.1 Truncated Inception Net: COVID-19 outbreak screening using chest X-rays [7] -- 5.4.2 Shallow CNN for COVID-19 outbreak screening using chest X-rays [2] -- 5.4.3 DNN to detect COVID-19: one architecture for both chest CT and X-ray images [3] -- 5.5 Discussion: how big data is big? -- References -- Index -- Back Cover
Title Deep Learning Models for Medical Imaging
URI https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6721736
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780128236505
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA7eEH3yineKKPgSbZa2SR9188Z0CI7h22jTREWt087Lz_ckTbMxEfFBCqVNQ5v2S88tyXcQ2lFc-akgIc4YUThIVIo5lRxzlWl6uDhLDX1x54K1WvzmJr6y6S0Lk06A5Tn__Ix7_wo1lAHYeunsH-B2N4UCOAbQYQ-ww37EInanJeINKXsVX-qtSXL2aMgW3GDM-ZNJSeSCKjp_cGHCKs39QbS0US7xat3rcQjXdU7vbNXrD3iAzLO34XhBjYzEC9xClkp26B42Esav3EutvGo09Etqqm_CtvT7j0qOXgKC1dTFxHBCgt0-UDFu4t_xUT0Cn5PRaJee9F6wzv6lR8l3aaNEYhyNswgk1eRhvXHadNEyCmYdDXzDiWTbxCx9kmtjRSlLooOf2zSLZpPiAfQH6JZ-8U0BG6uiPYcmpV5qMo_GZL6Api_tNIdFtKeh9CoovRJKD6D0LJSehXIJdU6O2_UzbFNa4ESz-gQYrDEhFQ-4JPA71FKRhjJTccopZTWuwiSkmQCvmySCwV-koFj4sCUpSWOaMLqMJvLnXK4gT4DrGCmhQEKrQGSMC5KB8638hAWSSbWKtodetfv-aIbfi677aGCch6vIq75A11y3c4K7A6TWfq-yjmYGXW0DTfRf3-QmmhLv_fvidcuC-QX3kTe8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Deep+Learning+Models+for+Medical+Imaging&rft.au=Santosh%2C+K.+C&rft.au=Das%2C+Nibaran&rft.au=Ghosh%2C+Swarnendu&rft.date=2021-01-01&rft.pub=Elsevier+Science+%26+Technology&rft.isbn=9780128235041&rft_id=info:doi/10.1016%2FB978-0-12-823504-1.00002-7&rft.externalDocID=EBC6721736
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97801282%2F9780128236505.jpg