Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers

We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a single initial state, we do so for ini...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of ACM on programming languages Ročník 8; číslo OOPSLA2; s. 817 - 845
Hlavní autori: Zhang, Linpeng, Zilberstein, Noam, Kaminski, Benjamin Lucien, Silva, Alexandra
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 08.10.2024
Predmet:
ISSN:2475-1421, 2475-1421
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a single initial state, we do so for initial sets of states or initial probability distributions. We thus (i) obtain a weakest pre calculus for hyper Hoare logic and (ii) enable reasoning about so-called hyperquantities which include expected values but also quantities (e.g. variance) out of scope of previous work. As a byproduct, we obtain a novel strongest post for weighted programs that extends both existing strongest and strongest liberal post calculi. Our framework reveals novel dualities between forward and backward transformers, correctness and incorrectness, as well as nontermination and unreachability.
AbstractList We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a single initial state, we do so for initial sets of states or initial probability distributions. We thus (i) obtain a weakest pre calculus for hyper Hoare logic and (ii) enable reasoning about so-called hyperquantities which include expected values but also quantities (e.g. variance) out of scope of previous work. As a byproduct, we obtain a novel strongest post for weighted programs that extends both existing strongest and strongest liberal post calculi. Our framework reveals novel dualities between forward and backward transformers, correctness and incorrectness, as well as nontermination and unreachability.
ArticleNumber 300
Author Zhang, Linpeng
Zilberstein, Noam
Silva, Alexandra
Kaminski, Benjamin Lucien
Author_xml – sequence: 1
  givenname: Linpeng
  orcidid: 0000-0002-1485-327X
  surname: Zhang
  fullname: Zhang, Linpeng
  email: linpeng.zhang.20@ucl.ac.uk
  organization: University College London, London, United Kingdom
– sequence: 2
  givenname: Noam
  orcidid: 0000-0001-6388-063X
  surname: Zilberstein
  fullname: Zilberstein, Noam
  email: noamz@cs.cornell.edu
  organization: Cornell University, Ithaca, USA
– sequence: 3
  givenname: Benjamin Lucien
  orcidid: 0000-0001-5185-2324
  surname: Kaminski
  fullname: Kaminski, Benjamin Lucien
  email: kaminski@cs.uni-saarland.de
  organization: Saarland University, Saarbrücken, Germany / University College London, London, United Kingdom
– sequence: 4
  givenname: Alexandra
  orcidid: 0000-0001-5014-9784
  surname: Silva
  fullname: Silva, Alexandra
  email: alexandra.silva@cornell.edu
  organization: Cornell University, Ithaca, USA
BookMark eNptkM1LAzEQxYNUsNbi3VNunlaTzW438SbF2kJBhRaPyzSZSLTN1iQW-t_bL6WIl5nhze-9wzsnLd94JOSSsxvOi_JW9KSqCnZC2nlRlRkvct46us9IN8Z3xhhXopBCtcnnyxf45BIkt0L6ivCBMdHheomBPge8o1Pv7Nr5N9pvQkCdPMZIwRs68vpI2TmWodnM5DDSlYOt3zgNCekkgI-2CQsM8YKcWphH7B52h0wHD5P-MBs_PY769-MMuMpZhsqCljbvGSlYJY3UKAwHNuspU85Uzq0uuSxnrIIScw1CM6EEt0ZrprgQokOu97k6NDEGtPUyuAWEdc1ZvS2rPpS1IbM_pN4V0vgUwM3_4a_2POjFb-jP8xv6ench
CitedBy_id crossref_primary_10_1145_3720486
crossref_primary_10_1145_3704855
crossref_primary_10_1145_3743131
Cites_doi 10.1145/964001.964003
10.1145/3689720
10.1007/978-3-642-24690-6_12
10.1145/3527310
10.1145/229542.229547
10.2307/2325085
10.1145/1594834.1480894
10.1145/3371078
10.1145/3586045
10.1145/256167.256195
10.1016/0022-0000(85)90012-1
10.1145/3371105
10.1109/CSFW.2006.16
10.1145/2908080.2908092
10.1145/3527331
10.1145/3371072
10.1109/SFCS.1976.27
10.3233/JCS-2009-0393
10.1145/3656437
10.1109/SP.1982.10014
10.1109/SP.1987.10009
10.2307/1990888
10.1145/3341708
10.1145/3434320
10.1007/3-540-45442-X_14
10.1145/360933.360975
10.2307/2268810
10.1137/0207005
10.1145/3632849
10.1145/3563298
10.1007/978-3-031-21037-2_4
10.1109/32.481534
10.1145/1706299.1706307
10.1145/322108.322121
10.4230/LIPIcs.ECOOP.2023.19
10.1145/3649821
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3689740
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-1421
EndPage 845
ExternalDocumentID 10_1145_3689740
3689740
GrantInformation_xml – fundername: ERC
  grantid: 101002697
  funderid: https://doi.org/10.13039/
GroupedDBID AAKMM
AAYFX
ACM
ADPZR
AIKLT
ALMA_UNASSIGNED_HOLDINGS
GUFHI
LHSKQ
M~E
OK1
ROL
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a1920-e9fac8f26d83078d8ce3d1a0b69d5b921fc5185b07a5e2ca3c03931fdcc091333
ISSN 2475-1421
IngestDate Sat Nov 29 07:48:01 EST 2025
Tue Nov 18 22:38:53 EST 2025
Fri Feb 21 01:26:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue OOPSLA2
Keywords weakest precondition
strongest postcondition
hyperproperties
probabilistic verification
quantitative software verification
nondeterminism
Language English
License This work is licensed under a Creative Commons Attribution International 4.0 License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a1920-e9fac8f26d83078d8ce3d1a0b69d5b921fc5185b07a5e2ca3c03931fdcc091333
ORCID 0000-0001-6388-063X
0000-0001-5185-2324
0000-0002-1485-327X
0000-0001-5014-9784
OpenAccessLink https://dl.acm.org/doi/10.1145/3689740
PageCount 29
ParticipantIDs crossref_primary_10_1145_3689740
crossref_citationtrail_10_1145_3689740
acm_primary_3689740
PublicationCentury 2000
PublicationDate 20241008
2024-10-08
PublicationDateYYYYMMDD 2024-10-08
PublicationDate_xml – month: 10
  year: 2024
  text: 20241008
  day: 08
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle Proceedings of ACM on programming languages
PublicationTitleAbbrev ACM PACMPL
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
References J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In 1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.1982.10014 10.1109/SP.1982.10014
Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’04) (proceedings of the 31st acm sigplan-sigact symposium on principles of programming languages (popl ’04) ed.). ACM, 43. https://www.microsoft.com/en-us/research/publication/simple-relational-correctness-proofs-for-static-analyses-and-program-transformations
Edsger W. Dijkstra. 1976. A Discipline of Programming.. Prentice-Hall. isbn:013215871X
Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 265–284. isbn:978-3-642-54792-8
Noam Zilberstein. 2024. A Relatively Complete Program Logic for Effectful Branching. arxiv:2401.04594.
Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming low is harder: induction for lower bounds in probabilistic program verification. Proc. ACM Program. Lang., 4, POPL (2019), Article 37, dec, 28 pages. https://doi.org/10.1145/3371105 10.1145/3371105
Edmund Melson Clarke. 1979. Programming Language Constructs for Which It Is Impossible To Obtain Good Hoare Axiom Systems. J. ACM, 26, 1 (1979), jan, 129–147. issn:0004-5411 https://doi.org/10.1145/322108.322121 10.1145/322108.322121
Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra monads for all. Proc. ACM Program. Lang., 3, ICFP (2019), Article 104, jul, 29 pages. https://doi.org/10.1145/3341708 10.1145/3341708
Bernhard Möller, Peter O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In Relational and Algebraic Methods in Computer Science, Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter (Eds.). Springer International Publishing, Cham. 325–343. isbn:978-3-030-88701-8
Joakim von Wright. 2002. From Kleene Algebra to Refinement Algebra. In International Conference on Mathematics of Program Construction. https://api.semanticscholar.org/CorpusID:2003560
Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation of Correctness and Incorrectness Reasoning. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), Article 93, Apr, 29 pages. https://doi.org/10.1145/3586045 10.1145/3586045
Donald E. Knuth. 1992. Two Notes on Notation. Am. Math. Monthly, 99, 5 (1992), May, 403–422.
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2018. Quantitative Separation Logic. CoRR, abs/1802.10467 (2018), arxiv:1802.10467. arxiv:1802.10467
Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA. 57–69. isbn:9781450342612 https://doi.org/10.1145/2908080.2908092 10.1145/2908080.2908092
Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph. D. Dissertation. Vrije Universiteit Amsterdam. https://core.ac.uk/reader/15452110
Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Apr, https://doi.org/10.1145/3649821 10.1145/3649821
Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. 2006. Information-Flow Security for Interactive Programs. In Proceedings of the 19th IEEE Workshop on Computer Security Foundations (CSFW ’06). IEEE Computer Society, USA. 190–201. isbn:0769526152 https://doi.org/10.1109/CSFW.2006.16 10.1109/CSFW.2006.16
Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst., 19, 3 (1997), may, 427–443. issn:0164-0925 https://doi.org/10.1145/256167.256195 10.1145/256167.256195
H.G. Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc., 74 (1953), 358–366. https://doi.org/10.2307/1990888 10.2307/1990888
Vaughan R. Pratt. 1976. Semantical Considerations on Floyd-Hoare Logic. In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976). 109–121. https://doi.org/10.1109/SFCS.1976.27 10.1109/SFCS.1976.27
Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur., 18, 6 (2010), 1157–1210.
Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin, Heidelberg. isbn:0387969578
Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput., 7 (1978), 70–90.
Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham. 225–252. isbn:978-3-030-53291-8
Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In SEFM (Lecture Notes in Computer Science, Vol. 7041). Springer, 155–171.
Azalea Raad, Julien Vanegue, and Peter O’Hearn. 2024. Compositional Non-Termination Proving. https://www.soundandcomplete.org/papers/Unter.pdf
Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2023. Sufficient Incorrectness Logic: SIL and Separation SIL. arxiv:2310.18156.
Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract Interpretations. In LICS. IEEE, 1–13.
Daryl McCullough. 1987. Specifications for Multi-Level Security and a Hook-Up. In 1987 IEEE Symposium on Security and Privacy. 161–161. https://doi.org/10.1109/SP.1987.10009 10.1109/SP.1987.10009
Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner. 2023. Exact Separation Logic: Towards Bridging the Gap Between Verification and Bug-Finding. In 37th European Conference on Object-Oriented Programming (ECOOP 2023), Karim Ali and Guido Salvaneschi (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 19:1–19:27. isbn:978-3-95977-281-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2023.19 10.4230/LIPIcs.ECOOP.2023.19
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation. Proc. ACM Program. Lang., 8, POPL (2024), Article 7, jan, 34 pages. https://doi.org/10.1145/3632849 10.1145/3632849
Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM, 18, 8 (1975), 453–457.
Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. 2010. Compositional may-must program analysis: unleashing the power of alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). Association for Computing Machinery, New York, NY, USA. 43–56. isbn:9781605584799 https://doi.org/10.1145/1706299.1706307 10.1145/1706299.1706307
Robert Dickerson, Qianchuan Ye, Michael K. Zhang, and Benjamin Delaware. 2022. RHLE: Modular Deductive Verification of Relational ∀ ∃ Properties. In Programming Languages and Systems: 20th Asian Symposium, APLAS 2022, Auckland, New Zealand, December 5, 2022, Proceedings. Springer-Verlag, Berlin, Heidelberg. 67–87. isbn:978-3-031-21036-5 https://doi.org/10.1007/978-3-031-21037-2_4 10.1007/978-3-031-21037-2_4
Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic proofs. SIGPLAN Not., 44, 1 (2009), jan, 90–101. issn:0362-1340 https://doi.org/10.1145/1594834.1480894 10.1145/1594834.1480894
Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program. Lang. Syst., 18, 3 (1996), 325–353.
Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verification of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang., 5, POPL (2021), 1–30.
Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang., 4, POPL (2020), Article 10, Dec., 32 pages. https://doi.org/10.1145/3371078 10.1145/3371078
Alan Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 1 (1936), 230–265. https://doi.org/10.2307/2268810 10.2307/2268810
Claire Jones. 1990. Probabilistic Non-Determinism. Ph. D. Dissertation. University of Edinburgh, UK.
J. McLean. 1996. A general theory of composition for a class of "possibilistic" properties. IEEE Transactions on Software Engineering, 22, 1 (1996), 53–67. https://doi.org/10.1109/32.481534 10.1109/32.481534
Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM Program. Lang., 8, PLDI (2024), Article 207, jun, 25 pages. https://doi.org/10.1145/3656437 10.1145/3656437
Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci., 30, 2 (1985), 162–178.
Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post: A Calculus for Reasoning about the Flow of Quantitative Information. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–29.
Kevin Batz, Adrian Gallus, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Tobias Winkler. 2022. Weighted Programming: A Programming Paradigm for Specifying Mathematical Models. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–30.
Emanuele D’Osualdo, Azadeh Farzan, and Derek Dreyer. 2022. Proving hypersafety co
e_1_2_1_20_1
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_43_1
e_1_2_1_28_1
e_1_2_1_49_1
McIver Annabelle (e_1_2_1_34_1)
e_1_2_1_47_1
Kaminski Benjamin Lucien (e_1_2_1_26_1)
Möller Bernhard (e_1_2_1_36_1)
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
Batz Kevin (e_1_2_1_5_1) 2018
e_1_2_1_10_1
Dijkstra Edsger W. (e_1_2_1_18_1)
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
Clarkson Michael R. (e_1_2_1_9_1)
e_1_2_1_42_1
e_1_2_1_40_1
Dijkstra Edsger W. (e_1_2_1_19_1) 1990
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_29_1
Hoare C. A. R. (e_1_2_1_24_1) 1969
e_1_2_1_30_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
Bruni Roberto (e_1_2_1_7_1)
Raad Azalea (e_1_2_1_41_1)
References_xml – reference: Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.
– reference: Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang., 4, POPL (2020), Article 10, Dec., 32 pages. https://doi.org/10.1145/3371078 10.1145/3371078
– reference: Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2023. Sufficient Incorrectness Logic: SIL and Separation SIL. arxiv:2310.18156.
– reference: J. McLean. 1996. A general theory of composition for a class of "possibilistic" properties. IEEE Transactions on Software Engineering, 22, 1 (1996), 53–67. https://doi.org/10.1109/32.481534 10.1109/32.481534
– reference: Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post: A Calculus for Reasoning about the Flow of Quantitative Information. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–29.
– reference: Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic proofs. SIGPLAN Not., 44, 1 (2009), jan, 90–101. issn:0362-1340 https://doi.org/10.1145/1594834.1480894 10.1145/1594834.1480894
– reference: Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract Interpretations. In LICS. IEEE, 1–13.
– reference: Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM Program. Lang., 8, PLDI (2024), Article 207, jun, 25 pages. https://doi.org/10.1145/3656437 10.1145/3656437
– reference: Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Apr, https://doi.org/10.1145/3649821 10.1145/3649821
– reference: Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 265–284. isbn:978-3-642-54792-8
– reference: Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’04) (proceedings of the 31st acm sigplan-sigact symposium on principles of programming languages (popl ’04) ed.). ACM, 43. https://www.microsoft.com/en-us/research/publication/simple-relational-correctness-proofs-for-static-analyses-and-program-transformations/
– reference: Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program. Lang. Syst., 18, 3 (1996), 325–353.
– reference: Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham. 225–252. isbn:978-3-030-53291-8
– reference: Noam Zilberstein. 2024. A Relatively Complete Program Logic for Effectful Branching. arxiv:2401.04594.
– reference: Robert Dickerson, Qianchuan Ye, Michael K. Zhang, and Benjamin Delaware. 2022. RHLE: Modular Deductive Verification of Relational ∀ ∃ Properties. In Programming Languages and Systems: 20th Asian Symposium, APLAS 2022, Auckland, New Zealand, December 5, 2022, Proceedings. Springer-Verlag, Berlin, Heidelberg. 67–87. isbn:978-3-031-21036-5 https://doi.org/10.1007/978-3-031-21037-2_4 10.1007/978-3-031-21037-2_4
– reference: Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci., 30, 2 (1985), 162–178.
– reference: Claire Jones. 1990. Probabilistic Non-Determinism. Ph. D. Dissertation. University of Edinburgh, UK.
– reference: Edsger W. Dijkstra. 1976. A Discipline of Programming.. Prentice-Hall. isbn:013215871X
– reference: Donald E. Knuth. 1992. Two Notes on Notation. Am. Math. Monthly, 99, 5 (1992), May, 403–422.
– reference: Kevin Batz, Adrian Gallus, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Tobias Winkler. 2022. Weighted Programming: A Programming Paradigm for Specifying Mathematical Models. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–30.
– reference: Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra monads for all. Proc. ACM Program. Lang., 3, ICFP (2019), Article 104, jul, 29 pages. https://doi.org/10.1145/3341708 10.1145/3341708
– reference: Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation. Proc. ACM Program. Lang., 8, POPL (2024), Article 7, jan, 34 pages. https://doi.org/10.1145/3632849 10.1145/3632849
– reference: Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst., 19, 3 (1997), may, 427–443. issn:0164-0925 https://doi.org/10.1145/256167.256195 10.1145/256167.256195
– reference: C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. 12, 10 (1969), issn:0001-0782
– reference: Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation of Correctness and Incorrectness Reasoning. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), Article 93, Apr, 29 pages. https://doi.org/10.1145/3586045 10.1145/3586045
– reference: Benjamin Lucien Kaminski. 2019. Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph. D. Dissertation. RWTH Aachen University, Germany.
– reference: Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput., 7 (1978), 70–90.
– reference: Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA. 57–69. isbn:9781450342612 https://doi.org/10.1145/2908080.2908092 10.1145/2908080.2908092
– reference: Alan Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 1 (1936), 230–265. https://doi.org/10.2307/2268810 10.2307/2268810
– reference: Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2019. The next 700 relational program logics. Proc. ACM Program. Lang., 4, POPL (2019), Article 4, dec, 33 pages. https://doi.org/10.1145/3371072 10.1145/3371072
– reference: Joakim von Wright. 2002. From Kleene Algebra to Refinement Algebra. In International Conference on Mathematics of Program Construction. https://api.semanticscholar.org/CorpusID:2003560
– reference: Daryl McCullough. 1987. Specifications for Multi-Level Security and a Hook-Up. In 1987 IEEE Symposium on Security and Privacy. 161–161. https://doi.org/10.1109/SP.1987.10009 10.1109/SP.1987.10009
– reference: Bernhard Möller, Peter O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In Relational and Algebraic Methods in Computer Science, Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter (Eds.). Springer International Publishing, Cham. 325–343. isbn:978-3-030-88701-8
– reference: Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin, Heidelberg. isbn:0387969578
– reference: Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner. 2023. Exact Separation Logic: Towards Bridging the Gap Between Verification and Bug-Finding. In 37th European Conference on Object-Oriented Programming (ECOOP 2023), Karim Ali and Guido Salvaneschi (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 19:1–19:27. isbn:978-3-95977-281-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2023.19 10.4230/LIPIcs.ECOOP.2023.19
– reference: Edmund Melson Clarke. 1979. Programming Language Constructs for Which It Is Impossible To Obtain Good Hoare Axiom Systems. J. ACM, 26, 1 (1979), jan, 129–147. issn:0004-5411 https://doi.org/10.1145/322108.322121 10.1145/322108.322121
– reference: Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. 2006. Information-Flow Security for Interactive Programs. In Proceedings of the 19th IEEE Workshop on Computer Security Foundations (CSFW ’06). IEEE Computer Society, USA. 190–201. isbn:0769526152 https://doi.org/10.1109/CSFW.2006.16 10.1109/CSFW.2006.16
– reference: Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verification of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang., 5, POPL (2021), 1–30.
– reference: Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2018. Quantitative Separation Logic. CoRR, abs/1802.10467 (2018), arxiv:1802.10467. arxiv:1802.10467
– reference: J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In 1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.1982.10014 10.1109/SP.1982.10014
– reference: Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming low is harder: induction for lower bounds in probabilistic program verification. Proc. ACM Program. Lang., 4, POPL (2019), Article 37, dec, 28 pages. https://doi.org/10.1145/3371105 10.1145/3371105
– reference: Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur., 18, 6 (2010), 1157–1210.
– reference: Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. 2010. Compositional may-must program analysis: unleashing the power of alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). Association for Computing Machinery, New York, NY, USA. 43–56. isbn:9781605584799 https://doi.org/10.1145/1706299.1706307 10.1145/1706299.1706307
– reference: Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In SEFM (Lecture Notes in Computer Science, Vol. 7041). Springer, 155–171.
– reference: Emanuele D’Osualdo, Azadeh Farzan, and Derek Dreyer. 2022. Proving hypersafety compositionally. Proc. ACM Program. Lang., 6, OOPSLA2 (2022), Article 135, oct, 26 pages. https://doi.org/10.1145/3563298 10.1145/3563298
– reference: Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph. D. Dissertation. Vrije Universiteit Amsterdam. https://core.ac.uk/reader/15452110
– reference: H.G. Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc., 74 (1953), 358–366. https://doi.org/10.2307/1990888 10.2307/1990888
– reference: Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM, 18, 8 (1975), 453–457.
– reference: Vaughan R. Pratt. 1976. Semantical Considerations on Floyd-Hoare Logic. In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976). 109–121. https://doi.org/10.1109/SFCS.1976.27 10.1109/SFCS.1976.27
– reference: Azalea Raad, Julien Vanegue, and Peter O’Hearn. 2024. Compositional Non-Termination Proving. https://www.soundandcomplete.org/papers/Unter.pdf
– ident: e_1_2_1_6_1
  doi: 10.1145/964001.964003
– ident: e_1_2_1_42_1
  doi: 10.1145/3689720
– ident: e_1_2_1_14_1
  doi: 10.1007/978-3-642-24690-6_12
– ident: e_1_2_1_3_1
  doi: 10.1145/3527310
– ident: e_1_2_1_37_1
  doi: 10.1145/229542.229547
– ident: e_1_2_1_27_1
  doi: 10.2307/2325085
– volume-title: Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll.
  year: 2018
  ident: e_1_2_1_5_1
– ident: e_1_2_1_2_1
  doi: 10.1145/1594834.1480894
– volume-title: An Axiomatic Basis for Computer Programming. 12, 10
  year: 1969
  ident: e_1_2_1_24_1
– ident: e_1_2_1_38_1
  doi: 10.1145/3371078
– ident: e_1_2_1_49_1
  doi: 10.1145/3586045
– ident: e_1_2_1_29_1
  doi: 10.1145/256167.256195
– volume-title: A Logic for Locally Complete Abstract Interpretations
  ident: e_1_2_1_7_1
– ident: e_1_2_1_28_1
  doi: 10.1016/0022-0000(85)90012-1
– ident: e_1_2_1_23_1
  doi: 10.1145/3371105
– ident: e_1_2_1_39_1
  doi: 10.1109/CSFW.2006.16
– ident: e_1_2_1_44_1
  doi: 10.1145/2908080.2908092
– volume-title: Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph. D. Dissertation
  ident: e_1_2_1_26_1
– ident: e_1_2_1_48_1
– volume-title: Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.)
  ident: e_1_2_1_9_1
– ident: e_1_2_1_47_1
  doi: 10.1145/3527331
– volume-title: Scholten
  year: 1990
  ident: e_1_2_1_19_1
– ident: e_1_2_1_31_1
  doi: 10.1145/3371072
– volume-title: A Discipline of Programming
  ident: e_1_2_1_18_1
– ident: e_1_2_1_40_1
  doi: 10.1109/SFCS.1976.27
– ident: e_1_2_1_10_1
  doi: 10.3233/JCS-2009-0393
– volume-title: Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic
  ident: e_1_2_1_41_1
– ident: e_1_2_1_13_1
  doi: 10.1145/3656437
– ident: e_1_2_1_22_1
  doi: 10.1109/SP.1982.10014
– ident: e_1_2_1_33_1
  doi: 10.1109/SP.1987.10009
– ident: e_1_2_1_43_1
  doi: 10.2307/1990888
– ident: e_1_2_1_30_1
  doi: 10.1145/3341708
– ident: e_1_2_1_4_1
  doi: 10.1145/3434320
– ident: e_1_2_1_46_1
  doi: 10.1007/3-540-45442-X_14
– ident: e_1_2_1_17_1
  doi: 10.1145/360933.360975
– ident: e_1_2_1_45_1
  doi: 10.2307/2268810
– ident: e_1_2_1_11_1
  doi: 10.1137/0207005
– ident: e_1_2_1_1_1
– ident: e_1_2_1_12_1
  doi: 10.1145/3632849
– ident: e_1_2_1_20_1
  doi: 10.1145/3563298
– ident: e_1_2_1_15_1
– ident: e_1_2_1_16_1
  doi: 10.1007/978-3-031-21037-2_4
– ident: e_1_2_1_35_1
  doi: 10.1109/32.481534
– ident: e_1_2_1_21_1
  doi: 10.1145/1706299.1706307
– ident: e_1_2_1_25_1
– volume-title: Relational and Algebraic Methods in Computer Science
  ident: e_1_2_1_36_1
– volume-title: Refinement and Proof for Probabilistic Systems
  ident: e_1_2_1_34_1
– ident: e_1_2_1_8_1
  doi: 10.1145/322108.322121
– ident: e_1_2_1_32_1
  doi: 10.4230/LIPIcs.ECOOP.2023.19
– ident: e_1_2_1_50_1
  doi: 10.1145/3649821
SSID ssj0001934839
Score 2.3040645
Snippet We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 817
SubjectTerms Axiomatic semantics
Hoare logic
Logic and verification
Pre- and post-conditions
Probabilistic computation
Program analysis
Program verification
Programming logic
Theory of computation
SubjectTermsDisplay Theory of computation -- Axiomatic semantics
Theory of computation -- Hoare logic
Theory of computation -- Logic and verification
Theory of computation -- Pre- and post-conditions
Theory of computation -- Probabilistic computation
Theory of computation -- Program analysis
Theory of computation -- Program verification
Theory of computation -- Programming logic
Title Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers
URI https://dl.acm.org/doi/10.1145/3689740
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2475-1421
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001934839
  issn: 2475-1421
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZC4cCFRwHR8pAPiEu0Yl_OensLEaiHNA2iQG-R12tLKck2bJOoJ_4P_5KZ9SOmcIADl9XG63glz6eZz7PzIOSV1sAadMFA-zEZ5WCTo4qlMpISjH1WcCG6Cnyfx8Vkws_Py2mv98PlwmwXRdPw6-ty9V9FDWMgbEyd_Qdx-0VhAO5B6HAFscP1rwT_YSOaLnMMY4K-KPEV9H7_GI6bLcZboAcAeKbJbhphaw657rSdiQuWwUj3nxU661usutrfzgWuUHdZc6YqOjJeG0LvGO7UW8QuSGQ4OsHvETYMbIlvdS5Sz-a90xoOxitlTSmOz7EA15Xrxzm5FEtvH8TSt9x-q5oL_Nkfb1BReZ_RfLEVQQ5PK0IPR5qbELsAkzZqvtOKaQ7ASnKTVu1UOA-Qeno6_TgepoFS5iY71Nl3U77yd9ORY5WNbMDhhBXvrKOPWbRPbpHbacFKVKAn3wN3XpnlwDVNWjau9cbOR9YjlwHrCejL2QNyz5476NDg5SHpqWaf3Hc9PahV8Y_ItxA-1MKHdlCgIPwj6sBDA_BQ2F76C3joDfBQAA_14KEheB6TT-_fnY2OI9uWIxJwHIgjVWohuU4HNQcDwWsuVVYnIq4GZc2qMk20ZMACq7gQTKVSZBLzvxNdS4lFaLPsCdlrLhv1lFBdA1vUcV4LLK2nOFeSi1RUMFGzJGMHZB82b7YyhVdmdksPyGu3mTNpK9ljQ5XFzGTZs91E6ie6NW5MOfzjG56RuzsgPid763ajXpA7crueX7UvO8n_BNc4kTI
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Weakest+Hyper+Pre%3A+Unifying+Correctness+and+Incorrectness+Hyperproperties+via+Predicate+Transformers&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Zhang%2C+Linpeng&rft.au=Zilberstein%2C+Noam&rft.au=Kaminski%2C+Benjamin+Lucien&rft.au=Silva%2C+Alexandra&rft.date=2024-10-08&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=8&rft.issue=OOPSLA2&rft.spage=817&rft.epage=845&rft_id=info:doi/10.1145%2F3689740&rft.externalDocID=3689740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon