Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers
We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a single initial state, we do so for ini...
Uložené v:
| Vydané v: | Proceedings of ACM on programming languages Ročník 8; číslo OOPSLA2; s. 817 - 845 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York, NY, USA
ACM
08.10.2024
|
| Predmet: | |
| ISSN: | 2475-1421, 2475-1421 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a single initial state, we do so for initial sets of states or initial probability distributions. We thus (i) obtain a weakest pre calculus for hyper Hoare logic and (ii) enable reasoning about so-called hyperquantities which include expected values but also quantities (e.g. variance) out of scope of previous work. As a byproduct, we obtain a novel strongest post for weighted programs that extends both existing strongest and strongest liberal post calculi. Our framework reveals novel dualities between forward and backward transformers, correctness and incorrectness, as well as nontermination and unreachability. |
|---|---|
| AbstractList | We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing calculi allow reasoning about the expected value that a quantity assumes after program termination from a single initial state, we do so for initial sets of states or initial probability distributions. We thus (i) obtain a weakest pre calculus for hyper Hoare logic and (ii) enable reasoning about so-called hyperquantities which include expected values but also quantities (e.g. variance) out of scope of previous work. As a byproduct, we obtain a novel strongest post for weighted programs that extends both existing strongest and strongest liberal post calculi. Our framework reveals novel dualities between forward and backward transformers, correctness and incorrectness, as well as nontermination and unreachability. |
| ArticleNumber | 300 |
| Author | Zhang, Linpeng Zilberstein, Noam Silva, Alexandra Kaminski, Benjamin Lucien |
| Author_xml | – sequence: 1 givenname: Linpeng orcidid: 0000-0002-1485-327X surname: Zhang fullname: Zhang, Linpeng email: linpeng.zhang.20@ucl.ac.uk organization: University College London, London, United Kingdom – sequence: 2 givenname: Noam orcidid: 0000-0001-6388-063X surname: Zilberstein fullname: Zilberstein, Noam email: noamz@cs.cornell.edu organization: Cornell University, Ithaca, USA – sequence: 3 givenname: Benjamin Lucien orcidid: 0000-0001-5185-2324 surname: Kaminski fullname: Kaminski, Benjamin Lucien email: kaminski@cs.uni-saarland.de organization: Saarland University, Saarbrücken, Germany / University College London, London, United Kingdom – sequence: 4 givenname: Alexandra orcidid: 0000-0001-5014-9784 surname: Silva fullname: Silva, Alexandra email: alexandra.silva@cornell.edu organization: Cornell University, Ithaca, USA |
| BookMark | eNptkM1LAzEQxYNUsNbi3VNunlaTzW438SbF2kJBhRaPyzSZSLTN1iQW-t_bL6WIl5nhze-9wzsnLd94JOSSsxvOi_JW9KSqCnZC2nlRlRkvct46us9IN8Z3xhhXopBCtcnnyxf45BIkt0L6ivCBMdHheomBPge8o1Pv7Nr5N9pvQkCdPMZIwRs68vpI2TmWodnM5DDSlYOt3zgNCekkgI-2CQsM8YKcWphH7B52h0wHD5P-MBs_PY769-MMuMpZhsqCljbvGSlYJY3UKAwHNuspU85Uzq0uuSxnrIIScw1CM6EEt0ZrprgQokOu97k6NDEGtPUyuAWEdc1ZvS2rPpS1IbM_pN4V0vgUwM3_4a_2POjFb-jP8xv6ench |
| CitedBy_id | crossref_primary_10_1145_3720486 crossref_primary_10_1145_3704855 crossref_primary_10_1145_3743131 |
| Cites_doi | 10.1145/964001.964003 10.1145/3689720 10.1007/978-3-642-24690-6_12 10.1145/3527310 10.1145/229542.229547 10.2307/2325085 10.1145/1594834.1480894 10.1145/3371078 10.1145/3586045 10.1145/256167.256195 10.1016/0022-0000(85)90012-1 10.1145/3371105 10.1109/CSFW.2006.16 10.1145/2908080.2908092 10.1145/3527331 10.1145/3371072 10.1109/SFCS.1976.27 10.3233/JCS-2009-0393 10.1145/3656437 10.1109/SP.1982.10014 10.1109/SP.1987.10009 10.2307/1990888 10.1145/3341708 10.1145/3434320 10.1007/3-540-45442-X_14 10.1145/360933.360975 10.2307/2268810 10.1137/0207005 10.1145/3632849 10.1145/3563298 10.1007/978-3-031-21037-2_4 10.1109/32.481534 10.1145/1706299.1706307 10.1145/322108.322121 10.4230/LIPIcs.ECOOP.2023.19 10.1145/3649821 |
| ContentType | Journal Article |
| Copyright | Owner/Author |
| Copyright_xml | – notice: Owner/Author |
| DBID | AAYXX CITATION |
| DOI | 10.1145/3689740 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2475-1421 |
| EndPage | 845 |
| ExternalDocumentID | 10_1145_3689740 3689740 |
| GrantInformation_xml | – fundername: ERC grantid: 101002697 funderid: https://doi.org/10.13039/ |
| GroupedDBID | AAKMM AAYFX ACM ADPZR AIKLT ALMA_UNASSIGNED_HOLDINGS GUFHI LHSKQ M~E OK1 ROL AAYXX AEFXT AEJOY AKRVB CITATION |
| ID | FETCH-LOGICAL-a1920-e9fac8f26d83078d8ce3d1a0b69d5b921fc5185b07a5e2ca3c03931fdcc091333 |
| ISSN | 2475-1421 |
| IngestDate | Sat Nov 29 07:48:01 EST 2025 Tue Nov 18 22:38:53 EST 2025 Fri Feb 21 01:26:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | OOPSLA2 |
| Keywords | weakest precondition strongest postcondition hyperproperties probabilistic verification quantitative software verification nondeterminism |
| Language | English |
| License | This work is licensed under a Creative Commons Attribution International 4.0 License. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a1920-e9fac8f26d83078d8ce3d1a0b69d5b921fc5185b07a5e2ca3c03931fdcc091333 |
| ORCID | 0000-0001-6388-063X 0000-0001-5185-2324 0000-0002-1485-327X 0000-0001-5014-9784 |
| OpenAccessLink | https://dl.acm.org/doi/10.1145/3689740 |
| PageCount | 29 |
| ParticipantIDs | crossref_primary_10_1145_3689740 crossref_citationtrail_10_1145_3689740 acm_primary_3689740 |
| PublicationCentury | 2000 |
| PublicationDate | 20241008 2024-10-08 |
| PublicationDateYYYYMMDD | 2024-10-08 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241008 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationTitle | Proceedings of ACM on programming languages |
| PublicationTitleAbbrev | ACM PACMPL |
| PublicationYear | 2024 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| References | J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In 1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.1982.10014 10.1109/SP.1982.10014 Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’04) (proceedings of the 31st acm sigplan-sigact symposium on principles of programming languages (popl ’04) ed.). ACM, 43. https://www.microsoft.com/en-us/research/publication/simple-relational-correctness-proofs-for-static-analyses-and-program-transformations Edsger W. Dijkstra. 1976. A Discipline of Programming.. Prentice-Hall. isbn:013215871X Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 265–284. isbn:978-3-642-54792-8 Noam Zilberstein. 2024. A Relatively Complete Program Logic for Effectful Branching. arxiv:2401.04594. Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming low is harder: induction for lower bounds in probabilistic program verification. Proc. ACM Program. Lang., 4, POPL (2019), Article 37, dec, 28 pages. https://doi.org/10.1145/3371105 10.1145/3371105 Edmund Melson Clarke. 1979. Programming Language Constructs for Which It Is Impossible To Obtain Good Hoare Axiom Systems. J. ACM, 26, 1 (1979), jan, 129–147. issn:0004-5411 https://doi.org/10.1145/322108.322121 10.1145/322108.322121 Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra monads for all. Proc. ACM Program. Lang., 3, ICFP (2019), Article 104, jul, 29 pages. https://doi.org/10.1145/3341708 10.1145/3341708 Bernhard Möller, Peter O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In Relational and Algebraic Methods in Computer Science, Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter (Eds.). Springer International Publishing, Cham. 325–343. isbn:978-3-030-88701-8 Joakim von Wright. 2002. From Kleene Algebra to Refinement Algebra. In International Conference on Mathematics of Program Construction. https://api.semanticscholar.org/CorpusID:2003560 Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation of Correctness and Incorrectness Reasoning. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), Article 93, Apr, 29 pages. https://doi.org/10.1145/3586045 10.1145/3586045 Donald E. Knuth. 1992. Two Notes on Notation. Am. Math. Monthly, 99, 5 (1992), May, 403–422. Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2018. Quantitative Separation Logic. CoRR, abs/1802.10467 (2018), arxiv:1802.10467. arxiv:1802.10467 Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA. 57–69. isbn:9781450342612 https://doi.org/10.1145/2908080.2908092 10.1145/2908080.2908092 Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph. D. Dissertation. Vrije Universiteit Amsterdam. https://core.ac.uk/reader/15452110 Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Apr, https://doi.org/10.1145/3649821 10.1145/3649821 Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. 2006. Information-Flow Security for Interactive Programs. In Proceedings of the 19th IEEE Workshop on Computer Security Foundations (CSFW ’06). IEEE Computer Society, USA. 190–201. isbn:0769526152 https://doi.org/10.1109/CSFW.2006.16 10.1109/CSFW.2006.16 Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst., 19, 3 (1997), may, 427–443. issn:0164-0925 https://doi.org/10.1145/256167.256195 10.1145/256167.256195 H.G. Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc., 74 (1953), 358–366. https://doi.org/10.2307/1990888 10.2307/1990888 Vaughan R. Pratt. 1976. Semantical Considerations on Floyd-Hoare Logic. In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976). 109–121. https://doi.org/10.1109/SFCS.1976.27 10.1109/SFCS.1976.27 Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur., 18, 6 (2010), 1157–1210. Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin, Heidelberg. isbn:0387969578 Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput., 7 (1978), 70–90. Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham. 225–252. isbn:978-3-030-53291-8 Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In SEFM (Lecture Notes in Computer Science, Vol. 7041). Springer, 155–171. Azalea Raad, Julien Vanegue, and Peter O’Hearn. 2024. Compositional Non-Termination Proving. https://www.soundandcomplete.org/papers/Unter.pdf Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2023. Sufficient Incorrectness Logic: SIL and Separation SIL. arxiv:2310.18156. Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract Interpretations. In LICS. IEEE, 1–13. Daryl McCullough. 1987. Specifications for Multi-Level Security and a Hook-Up. In 1987 IEEE Symposium on Security and Privacy. 161–161. https://doi.org/10.1109/SP.1987.10009 10.1109/SP.1987.10009 Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner. 2023. Exact Separation Logic: Towards Bridging the Gap Between Verification and Bug-Finding. In 37th European Conference on Object-Oriented Programming (ECOOP 2023), Karim Ali and Guido Salvaneschi (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 19:1–19:27. isbn:978-3-95977-281-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2023.19 10.4230/LIPIcs.ECOOP.2023.19 Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation. Proc. ACM Program. Lang., 8, POPL (2024), Article 7, jan, 34 pages. https://doi.org/10.1145/3632849 10.1145/3632849 Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM, 18, 8 (1975), 453–457. Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. 2010. Compositional may-must program analysis: unleashing the power of alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). Association for Computing Machinery, New York, NY, USA. 43–56. isbn:9781605584799 https://doi.org/10.1145/1706299.1706307 10.1145/1706299.1706307 Robert Dickerson, Qianchuan Ye, Michael K. Zhang, and Benjamin Delaware. 2022. RHLE: Modular Deductive Verification of Relational ∀ ∃ Properties. In Programming Languages and Systems: 20th Asian Symposium, APLAS 2022, Auckland, New Zealand, December 5, 2022, Proceedings. Springer-Verlag, Berlin, Heidelberg. 67–87. isbn:978-3-031-21036-5 https://doi.org/10.1007/978-3-031-21037-2_4 10.1007/978-3-031-21037-2_4 Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic proofs. SIGPLAN Not., 44, 1 (2009), jan, 90–101. issn:0362-1340 https://doi.org/10.1145/1594834.1480894 10.1145/1594834.1480894 Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program. Lang. Syst., 18, 3 (1996), 325–353. Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verification of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang., 5, POPL (2021), 1–30. Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang., 4, POPL (2020), Article 10, Dec., 32 pages. https://doi.org/10.1145/3371078 10.1145/3371078 Alan Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 1 (1936), 230–265. https://doi.org/10.2307/2268810 10.2307/2268810 Claire Jones. 1990. Probabilistic Non-Determinism. Ph. D. Dissertation. University of Edinburgh, UK. J. McLean. 1996. A general theory of composition for a class of "possibilistic" properties. IEEE Transactions on Software Engineering, 22, 1 (1996), 53–67. https://doi.org/10.1109/32.481534 10.1109/32.481534 Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM Program. Lang., 8, PLDI (2024), Article 207, jun, 25 pages. https://doi.org/10.1145/3656437 10.1145/3656437 Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci., 30, 2 (1985), 162–178. Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post: A Calculus for Reasoning about the Flow of Quantitative Information. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–29. Kevin Batz, Adrian Gallus, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Tobias Winkler. 2022. Weighted Programming: A Programming Paradigm for Specifying Mathematical Models. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–30. Emanuele D’Osualdo, Azadeh Farzan, and Derek Dreyer. 2022. Proving hypersafety co e_1_2_1_20_1 e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_43_1 e_1_2_1_28_1 e_1_2_1_49_1 McIver Annabelle (e_1_2_1_34_1) e_1_2_1_47_1 Kaminski Benjamin Lucien (e_1_2_1_26_1) Möller Bernhard (e_1_2_1_36_1) e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 Batz Kevin (e_1_2_1_5_1) 2018 e_1_2_1_10_1 Dijkstra Edsger W. (e_1_2_1_18_1) e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 Clarkson Michael R. (e_1_2_1_9_1) e_1_2_1_42_1 e_1_2_1_40_1 Dijkstra Edsger W. (e_1_2_1_19_1) 1990 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_29_1 Hoare C. A. R. (e_1_2_1_24_1) 1969 e_1_2_1_30_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 Bruni Roberto (e_1_2_1_7_1) Raad Azalea (e_1_2_1_41_1) |
| References_xml | – reference: Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. – reference: Peter W. O’Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang., 4, POPL (2020), Article 10, Dec., 32 pages. https://doi.org/10.1145/3371078 10.1145/3371078 – reference: Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. 2023. Sufficient Incorrectness Logic: SIL and Separation SIL. arxiv:2310.18156. – reference: J. McLean. 1996. A general theory of composition for a class of "possibilistic" properties. IEEE Transactions on Software Engineering, 22, 1 (1996), 53–67. https://doi.org/10.1109/32.481534 10.1109/32.481534 – reference: Linpeng Zhang and Benjamin Lucien Kaminski. 2022. Quantitative Strongest Post: A Calculus for Reasoning about the Flow of Quantitative Information. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–29. – reference: Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal certification of code-based cryptographic proofs. SIGPLAN Not., 44, 1 (2009), jan, 90–101. issn:0362-1340 https://doi.org/10.1145/1594834.1480894 10.1145/1594834.1480894 – reference: Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract Interpretations. In LICS. IEEE, 1–13. – reference: Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proc. ACM Program. Lang., 8, PLDI (2024), Article 207, jun, 25 pages. https://doi.org/10.1145/3656437 10.1145/3656437 – reference: Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness and Incorrectness with Computational Effects. Proc. ACM Program. Lang., 8, OOPSLA1 (2024), Apr, https://doi.org/10.1145/3649821 10.1145/3649821 – reference: Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 265–284. isbn:978-3-642-54792-8 – reference: Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and Program Transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’04) (proceedings of the 31st acm sigplan-sigact symposium on principles of programming languages (popl ’04) ed.). ACM, 43. https://www.microsoft.com/en-us/research/publication/simple-relational-correctness-proofs-for-static-analyses-and-program-transformations/ – reference: Carroll Morgan, Annabelle McIver, and Karen Seidel. 1996. Probabilistic Predicate Transformers. ACM Trans. Program. Lang. Syst., 18, 3 (1996), 325–353. – reference: Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing, Cham. 225–252. isbn:978-3-030-53291-8 – reference: Noam Zilberstein. 2024. A Relatively Complete Program Logic for Effectful Branching. arxiv:2401.04594. – reference: Robert Dickerson, Qianchuan Ye, Michael K. Zhang, and Benjamin Delaware. 2022. RHLE: Modular Deductive Verification of Relational ∀ ∃ Properties. In Programming Languages and Systems: 20th Asian Symposium, APLAS 2022, Auckland, New Zealand, December 5, 2022, Proceedings. Springer-Verlag, Berlin, Heidelberg. 67–87. isbn:978-3-031-21036-5 https://doi.org/10.1007/978-3-031-21037-2_4 10.1007/978-3-031-21037-2_4 – reference: Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci., 30, 2 (1985), 162–178. – reference: Claire Jones. 1990. Probabilistic Non-Determinism. Ph. D. Dissertation. University of Edinburgh, UK. – reference: Edsger W. Dijkstra. 1976. A Discipline of Programming.. Prentice-Hall. isbn:013215871X – reference: Donald E. Knuth. 1992. Two Notes on Notation. Am. Math. Monthly, 99, 5 (1992), May, 403–422. – reference: Kevin Batz, Adrian Gallus, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Tobias Winkler. 2022. Weighted Programming: A Programming Paradigm for Specifying Mathematical Models. Proc. ACM Program. Lang., 6, OOPSLA1 (2022), 1–30. – reference: Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Cătălin Hriţcu, Exequiel Rivas, and Éric Tanter. 2019. Dijkstra monads for all. Proc. ACM Program. Lang., 3, ICFP (2019), Article 104, jul, 29 pages. https://doi.org/10.1145/3341708 10.1145/3341708 – reference: Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation. Proc. ACM Program. Lang., 8, POPL (2024), Article 7, jan, 34 pages. https://doi.org/10.1145/3632849 10.1145/3632849 – reference: Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst., 19, 3 (1997), may, 427–443. issn:0164-0925 https://doi.org/10.1145/256167.256195 10.1145/256167.256195 – reference: C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. 12, 10 (1969), issn:0001-0782 – reference: Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation of Correctness and Incorrectness Reasoning. Proc. ACM Program. Lang., 7, OOPSLA1 (2023), Article 93, Apr, 29 pages. https://doi.org/10.1145/3586045 10.1145/3586045 – reference: Benjamin Lucien Kaminski. 2019. Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph. D. Dissertation. RWTH Aachen University, Germany. – reference: Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput., 7 (1978), 70–90. – reference: Marcelo Sousa and Isil Dillig. 2016. Cartesian hoare logic for verifying k-safety properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for Computing Machinery, New York, NY, USA. 57–69. isbn:9781450342612 https://doi.org/10.1145/2908080.2908092 10.1145/2908080.2908092 – reference: Alan Turing. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 1 (1936), 230–265. https://doi.org/10.2307/2268810 10.2307/2268810 – reference: Kenji Maillard, Cătălin Hriţcu, Exequiel Rivas, and Antoine Van Muylder. 2019. The next 700 relational program logics. Proc. ACM Program. Lang., 4, POPL (2019), Article 4, dec, 33 pages. https://doi.org/10.1145/3371072 10.1145/3371072 – reference: Joakim von Wright. 2002. From Kleene Algebra to Refinement Algebra. In International Conference on Mathematics of Program Construction. https://api.semanticscholar.org/CorpusID:2003560 – reference: Daryl McCullough. 1987. Specifications for Multi-Level Security and a Hook-Up. In 1987 IEEE Symposium on Security and Privacy. 161–161. https://doi.org/10.1109/SP.1987.10009 10.1109/SP.1987.10009 – reference: Bernhard Möller, Peter O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In Relational and Algebraic Methods in Computer Science, Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter (Eds.). Springer International Publishing, Cham. 325–343. isbn:978-3-030-88701-8 – reference: Edsger W. Dijkstra and Carel S. Scholten. 1990. Predicate Calculus and Program Semantics. Springer-Verlag, Berlin, Heidelberg. isbn:0387969578 – reference: Petar Maksimović, Caroline Cronjäger, Andreas Lööw, Julian Sutherland, and Philippa Gardner. 2023. Exact Separation Logic: Towards Bridging the Gap Between Verification and Bug-Finding. In 37th European Conference on Object-Oriented Programming (ECOOP 2023), Karim Ali and Guido Salvaneschi (Eds.) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 263). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 19:1–19:27. isbn:978-3-95977-281-5 issn:1868-8969 https://doi.org/10.4230/LIPIcs.ECOOP.2023.19 10.4230/LIPIcs.ECOOP.2023.19 – reference: Edmund Melson Clarke. 1979. Programming Language Constructs for Which It Is Impossible To Obtain Good Hoare Axiom Systems. J. ACM, 26, 1 (1979), jan, 129–147. issn:0004-5411 https://doi.org/10.1145/322108.322121 10.1145/322108.322121 – reference: Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. 2006. Information-Flow Security for Interactive Programs. In Proceedings of the 19th IEEE Workshop on Computer Security Foundations (CSFW ’06). IEEE Computer Society, USA. 190–201. isbn:0769526152 https://doi.org/10.1109/CSFW.2006.16 10.1109/CSFW.2006.16 – reference: Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verification of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang., 5, POPL (2021), 1–30. – reference: Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2018. Quantitative Separation Logic. CoRR, abs/1802.10467 (2018), arxiv:1802.10467. arxiv:1802.10467 – reference: J. A. Goguen and J. Meseguer. 1982. Security Policies and Security Models. In 1982 IEEE Symposium on Security and Privacy. 11–11. https://doi.org/10.1109/SP.1982.10014 10.1109/SP.1982.10014 – reference: Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter Katoen. 2019. Aiming low is harder: induction for lower bounds in probabilistic program verification. Proc. ACM Program. Lang., 4, POPL (2019), Article 37, dec, 28 pages. https://doi.org/10.1145/3371105 10.1145/3371105 – reference: Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur., 18, 6 (2010), 1157–1210. – reference: Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and Sai Deep Tetali. 2010. Compositional may-must program analysis: unleashing the power of alternation. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). Association for Computing Machinery, New York, NY, USA. 43–56. isbn:9781605584799 https://doi.org/10.1145/1706299.1706307 10.1145/1706299.1706307 – reference: Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In SEFM (Lecture Notes in Computer Science, Vol. 7041). Springer, 155–171. – reference: Emanuele D’Osualdo, Azadeh Farzan, and Derek Dreyer. 2022. Proving hypersafety compositionally. Proc. ACM Program. Lang., 6, OOPSLA2 (2022), Article 135, oct, 26 pages. https://doi.org/10.1145/3563298 10.1145/3563298 – reference: Jerry den Hartog. 2002. Probabilistic Extensions of Semantical Models. Ph. D. Dissertation. Vrije Universiteit Amsterdam. https://core.ac.uk/reader/15452110 – reference: H.G. Rice. 1953. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc., 74 (1953), 358–366. https://doi.org/10.2307/1990888 10.2307/1990888 – reference: Edsger Wybe Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM, 18, 8 (1975), 453–457. – reference: Vaughan R. Pratt. 1976. Semantical Considerations on Floyd-Hoare Logic. In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976). 109–121. https://doi.org/10.1109/SFCS.1976.27 10.1109/SFCS.1976.27 – reference: Azalea Raad, Julien Vanegue, and Peter O’Hearn. 2024. Compositional Non-Termination Proving. https://www.soundandcomplete.org/papers/Unter.pdf – ident: e_1_2_1_6_1 doi: 10.1145/964001.964003 – ident: e_1_2_1_42_1 doi: 10.1145/3689720 – ident: e_1_2_1_14_1 doi: 10.1007/978-3-642-24690-6_12 – ident: e_1_2_1_3_1 doi: 10.1145/3527310 – ident: e_1_2_1_37_1 doi: 10.1145/229542.229547 – ident: e_1_2_1_27_1 doi: 10.2307/2325085 – volume-title: Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. year: 2018 ident: e_1_2_1_5_1 – ident: e_1_2_1_2_1 doi: 10.1145/1594834.1480894 – volume-title: An Axiomatic Basis for Computer Programming. 12, 10 year: 1969 ident: e_1_2_1_24_1 – ident: e_1_2_1_38_1 doi: 10.1145/3371078 – ident: e_1_2_1_49_1 doi: 10.1145/3586045 – ident: e_1_2_1_29_1 doi: 10.1145/256167.256195 – volume-title: A Logic for Locally Complete Abstract Interpretations ident: e_1_2_1_7_1 – ident: e_1_2_1_28_1 doi: 10.1016/0022-0000(85)90012-1 – ident: e_1_2_1_23_1 doi: 10.1145/3371105 – ident: e_1_2_1_39_1 doi: 10.1109/CSFW.2006.16 – ident: e_1_2_1_44_1 doi: 10.1145/2908080.2908092 – volume-title: Advanced Weakest Precondition Calculi for Probabilistic Programs. Ph. D. Dissertation ident: e_1_2_1_26_1 – ident: e_1_2_1_48_1 – volume-title: Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.) ident: e_1_2_1_9_1 – ident: e_1_2_1_47_1 doi: 10.1145/3527331 – volume-title: Scholten year: 1990 ident: e_1_2_1_19_1 – ident: e_1_2_1_31_1 doi: 10.1145/3371072 – volume-title: A Discipline of Programming ident: e_1_2_1_18_1 – ident: e_1_2_1_40_1 doi: 10.1109/SFCS.1976.27 – ident: e_1_2_1_10_1 doi: 10.3233/JCS-2009-0393 – volume-title: Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic ident: e_1_2_1_41_1 – ident: e_1_2_1_13_1 doi: 10.1145/3656437 – ident: e_1_2_1_22_1 doi: 10.1109/SP.1982.10014 – ident: e_1_2_1_33_1 doi: 10.1109/SP.1987.10009 – ident: e_1_2_1_43_1 doi: 10.2307/1990888 – ident: e_1_2_1_30_1 doi: 10.1145/3341708 – ident: e_1_2_1_4_1 doi: 10.1145/3434320 – ident: e_1_2_1_46_1 doi: 10.1007/3-540-45442-X_14 – ident: e_1_2_1_17_1 doi: 10.1145/360933.360975 – ident: e_1_2_1_45_1 doi: 10.2307/2268810 – ident: e_1_2_1_11_1 doi: 10.1137/0207005 – ident: e_1_2_1_1_1 – ident: e_1_2_1_12_1 doi: 10.1145/3632849 – ident: e_1_2_1_20_1 doi: 10.1145/3563298 – ident: e_1_2_1_15_1 – ident: e_1_2_1_16_1 doi: 10.1007/978-3-031-21037-2_4 – ident: e_1_2_1_35_1 doi: 10.1109/32.481534 – ident: e_1_2_1_21_1 doi: 10.1145/1706299.1706307 – ident: e_1_2_1_25_1 – volume-title: Relational and Algebraic Methods in Computer Science ident: e_1_2_1_36_1 – volume-title: Refinement and Proof for Probabilistic Systems ident: e_1_2_1_34_1 – ident: e_1_2_1_8_1 doi: 10.1145/322108.322121 – ident: e_1_2_1_32_1 doi: 10.4230/LIPIcs.ECOOP.2023.19 – ident: e_1_2_1_50_1 doi: 10.1145/3649821 |
| SSID | ssj0001934839 |
| Score | 2.3040645 |
| Snippet | We present a novel weakest pre calculus for reasoning about quantitative hyperproperties over nondeterministic and probabilistic programs. Whereas existing... |
| SourceID | crossref acm |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 817 |
| SubjectTerms | Axiomatic semantics Hoare logic Logic and verification Pre- and post-conditions Probabilistic computation Program analysis Program verification Programming logic Theory of computation |
| SubjectTermsDisplay | Theory of computation -- Axiomatic semantics Theory of computation -- Hoare logic Theory of computation -- Logic and verification Theory of computation -- Pre- and post-conditions Theory of computation -- Probabilistic computation Theory of computation -- Program analysis Theory of computation -- Program verification Theory of computation -- Programming logic |
| Title | Quantitative Weakest Hyper Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers |
| URI | https://dl.acm.org/doi/10.1145/3689740 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2475-1421 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001934839 issn: 2475-1421 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZC4cCFRwHR8pAPiEu0Yl_OensLEaiHNA2iQG-R12tLKck2bJOoJ_4P_5KZ9SOmcIADl9XG63glz6eZz7PzIOSV1sAadMFA-zEZ5WCTo4qlMpISjH1WcCG6Cnyfx8Vkws_Py2mv98PlwmwXRdPw6-ty9V9FDWMgbEyd_Qdx-0VhAO5B6HAFscP1rwT_YSOaLnMMY4K-KPEV9H7_GI6bLcZboAcAeKbJbhphaw657rSdiQuWwUj3nxU661usutrfzgWuUHdZc6YqOjJeG0LvGO7UW8QuSGQ4OsHvETYMbIlvdS5Sz-a90xoOxitlTSmOz7EA15Xrxzm5FEtvH8TSt9x-q5oL_Nkfb1BReZ_RfLEVQQ5PK0IPR5qbELsAkzZqvtOKaQ7ASnKTVu1UOA-Qeno6_TgepoFS5iY71Nl3U77yd9ORY5WNbMDhhBXvrKOPWbRPbpHbacFKVKAn3wN3XpnlwDVNWjau9cbOR9YjlwHrCejL2QNyz5476NDg5SHpqWaf3Hc9PahV8Y_ItxA-1MKHdlCgIPwj6sBDA_BQ2F76C3joDfBQAA_14KEheB6TT-_fnY2OI9uWIxJwHIgjVWohuU4HNQcDwWsuVVYnIq4GZc2qMk20ZMACq7gQTKVSZBLzvxNdS4lFaLPsCdlrLhv1lFBdA1vUcV4LLK2nOFeSi1RUMFGzJGMHZB82b7YyhVdmdksPyGu3mTNpK9ljQ5XFzGTZs91E6ie6NW5MOfzjG56RuzsgPid763ajXpA7crueX7UvO8n_BNc4kTI |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Weakest+Hyper+Pre%3A+Unifying+Correctness+and+Incorrectness+Hyperproperties+via+Predicate+Transformers&rft.jtitle=Proceedings+of+ACM+on+programming+languages&rft.au=Zhang%2C+Linpeng&rft.au=Zilberstein%2C+Noam&rft.au=Kaminski%2C+Benjamin+Lucien&rft.au=Silva%2C+Alexandra&rft.date=2024-10-08&rft.pub=ACM&rft.eissn=2475-1421&rft.volume=8&rft.issue=OOPSLA2&rft.spage=817&rft.epage=845&rft_id=info:doi/10.1145%2F3689740&rft.externalDocID=3689740 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1421&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1421&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1421&client=summon |