Prompting Is All You Need: Automated Android Bug Replay with Large Language Models

Bug reports are vital for software maintenance that allow users to inform developers of the problems encountered while using the software. As such, researchers have committed considerable resources toward automating bug replay to expedite the process of software maintenance. Nonetheless, the success...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / International Conference on Software Engineering s. 803 - 815
Hlavní autoři: Feng, Sidong, Chen, Chunyang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 14.04.2024
Témata:
ISSN:1558-1225
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Bug reports are vital for software maintenance that allow users to inform developers of the problems encountered while using the software. As such, researchers have committed considerable resources toward automating bug replay to expedite the process of software maintenance. Nonetheless, the success of current au-tomated approaches is largely dictated by the characteristics and quality of bug reports, as they are constrained by the limitations of manually-crafted patterns and predefined vocabulary lists. In-spired by the success of Large Language Models (LLMs) in natural language understanding, we propose AdbGPT, a new lightweight approach to automatically reproduce the bugs from bug reports through prompt engineering, without any training and hard-coding effort. AdbGPT leverages few-shot learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning from LLMs to accomplish the bug replay in a manner similar to a devel-oper. Our evaluations demonstrate the effectiveness and efficiency of our AdbGPT to reproduce 81.3% of bug reports in 253.6 seconds, outperforming the state-of-the-art baselines and ablation studies. We also conduct a small-scale user study to confirm the usefulness of AdbGPT in enhancing developers' bug replay capabilities.
AbstractList Bug reports are vital for software maintenance that allow users to inform developers of the problems encountered while using the software. As such, researchers have committed considerable resources toward automating bug replay to expedite the process of software maintenance. Nonetheless, the success of current au-tomated approaches is largely dictated by the characteristics and quality of bug reports, as they are constrained by the limitations of manually-crafted patterns and predefined vocabulary lists. In-spired by the success of Large Language Models (LLMs) in natural language understanding, we propose AdbGPT, a new lightweight approach to automatically reproduce the bugs from bug reports through prompt engineering, without any training and hard-coding effort. AdbGPT leverages few-shot learning and chain-of-thought reasoning to elicit human knowledge and logical reasoning from LLMs to accomplish the bug replay in a manner similar to a devel-oper. Our evaluations demonstrate the effectiveness and efficiency of our AdbGPT to reproduce 81.3% of bug reports in 253.6 seconds, outperforming the state-of-the-art baselines and ablation studies. We also conduct a small-scale user study to confirm the usefulness of AdbGPT in enhancing developers' bug replay capabilities.
Author Chen, Chunyang
Feng, Sidong
Author_xml – sequence: 1
  givenname: Sidong
  surname: Feng
  fullname: Feng, Sidong
  email: sidong.feng@monash.edu
  organization: Monash University,Melbourne,Australia
– sequence: 2
  givenname: Chunyang
  surname: Chen
  fullname: Chen, Chunyang
  email: chunyang.chen@monash.edu
  organization: Monash University,Melbourne,Australia
BookMark eNotj8tOwzAQRQ0CiVK6ZsPCP5Di8cS1h12oeFQKD1WwYFVNajtESpMqD6H-PZVgc89ZHeleirOmbYIQ16DmAKm5RUPWKJzjQjlAeyJmZMmlSlmlwaanYgLGuAS0Nhdi1vdVoUyKxi5SnIj1e9fu9kPVlHLVy6yu5Vc7ytcQ_J3MxqHd8RC8zBrftZWX92Mp12Ff80H-VMO3zLkrw3GbcuSjvLQ-1P2VOI9c92H2z6n4fHz4WD4n-dvTapnlCQPBkFAEx56LyIULFCmyI2Mi64IQPW01BYyuACZQcUFW-y2BtWg0mAK1xqm4-etWIYTNvqt23B02cDznUmfxF7-4UPo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1145/3597503.3608137
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798400702174
EISSN 1558-1225
EndPage 815
ExternalDocumentID 10548487
Genre orig-research
GroupedDBID -~X
.4S
.DC
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
FEDTE
I-F
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-a191t-9f18adabfab8e9f9fa8955fa2b933d9c29e3f8b1a910f6972dc917735215b3223
IEDL.DBID RIE
IngestDate Wed Aug 27 01:53:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a191t-9f18adabfab8e9f9fa8955fa2b933d9c29e3f8b1a910f6972dc917735215b3223
PageCount 13
ParticipantIDs ieee_primary_10548487
PublicationCentury 2000
PublicationDate 2024-April-14
PublicationDateYYYYMMDD 2024-04-14
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-April-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings / International Conference on Software Engineering
PublicationTitleAbbrev ICSE
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
SSID ssib054357643
ssib055306466
ssj0006499
Score 2.597144
Snippet Bug reports are vital for software maintenance that allow users to inform developers of the problems encountered while using the software. As such, researchers...
SourceID ieee
SourceType Publisher
StartPage 803
SubjectTerms automated bug replay
Cognition
Computer bugs
large language model
Manuals
Natural language processing
prompt engineering
Software maintenance
Training
Vocabulary
Title Prompting Is All You Need: Automated Android Bug Replay with Large Language Models
URI https://ieeexplore.ieee.org/document/10548487
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5s8eCpPiq-2YPX1GQ3u5v1VsWiUEoRld7KPqUQm9Imgv_e2TT1cfDgJYSQhbCT2fl2dr75ELqk3jBqpY2YymSUWhFHiiQmMlRzQ513cc3ifxmK0SibTOS4IavXXBjnXF185nrhtj7Lt4WpQqoMPBzwNSDsFmoJwddkrc3PwyDuix-9pYIcDk8DVmmWZQ7Yvuntk6TsigKSZjHtUQ5Bkf4WV6ljy6Dzz6_aRd1vlh4ef8WfPbTl5vuos5FpwI3XHqBHeOltEcqb8cMK9_Mcg4vjEQy7xv2qLACzOotDZWMxs_imesWAynP1gUOOFg9DqThc12lNHLTT8lUXPQ_unm7vo0ZKIVKwISsj6ZNMWaW90pmTXnqwDGNeES0pmMoQ6ajPdKIAPXguBbEG9nEC0FnCNPg8PUTteTF3RwgrTbinisiYuZRqlTmVmMw6LjQhlvhj1A1zNF2su2VMN9Nz8sfzU7RDACiEE5okPUPtclm5c7Rt3svZanlR2_gTkMGlWw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60Cnqqj4pv9-A1tdnNJllvVZQWYyhSpbeyTynEprSJ4L93Nk19HDx4CSFkIexkdr6dnW8-hC6pVYxqrj0mYu4FOup4gvjKU1SGihprOhWL_yWJ0jQejfigJqtXXBhjTFV8ZtrutjrL17kqXaoMPBzwNSDsdbThpLNqutbq92EQ-aMf3aWcIE4YOLRSL8whoPu6u48fsCsKWJp1aJuGEBbpb3mVKrrcN__5XTuo9c3Tw4OvCLSL1sx0DzVXQg249tt99AQvvc1cgTPuL3A3yzA4OU5h2DXulkUOqNVo7Gob84nGN-UrBlyeiQ_ssrQ4ccXicF0mNrFTT8sWLfR8fze87Xm1mIInYEtWeNz6sdBCWiFjwy23YBvGrCCSUzCWItxQG0tfAH6wIY-IVrCTiwCf-UyC19MD1JjmU3OIsJAktFQQ3mEmoFLERvgq1iaMJCGa2CPUcnM0ni37ZYxX03P8x_MLtNUbPibjpJ8-nKBtArDBndf4wSlqFPPSnKFN9V5MFvPzyt6fYImopA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=Prompting+Is+All+You+Need%3A+Automated+Android+Bug+Replay+with+Large+Language+Models&rft.au=Feng%2C+Sidong&rft.au=Chen%2C+Chunyang&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=803&rft.epage=815&rft_id=info:doi/10.1145%2F3597503.3608137&rft.externalDocID=10548487