DeepLSH: Deep Locality-Sensitive Hash Learning for Fast and Efficient Near-Duplicate Crash Report Detection
Automatic crash bucketing is a crucial phase in the software de-velopment process for efficiently triaging bug reports. It generally consists in grouping similar reports through clustering techniques. However, with real-time streaming bug collection, systems are needed to quickly answer the question...
Uloženo v:
| Vydáno v: | Proceedings / International Conference on Software Engineering s. 2445 - 2456 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
ACM
14.04.2024
|
| Témata: | |
| ISSN: | 1558-1225 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Automatic crash bucketing is a crucial phase in the software de-velopment process for efficiently triaging bug reports. It generally consists in grouping similar reports through clustering techniques. However, with real-time streaming bug collection, systems are needed to quickly answer the question: What are the most similar bugs to a new one?, that is, efficiently find near-duplicates. It is thus natural to consider nearest neighbors search to tackle this problem and especially the well-known locality-sensitive hashing (LSH) to deal with large datasets due to its sublinear performance and theoretical guarantees on the similarity search accuracy. Surprisingly, LSH has not been considered in the crash bucketing literature. It is indeed not trivial to derive hash functions that satisfy the so-called locality-sensitive property for the most advanced crash bucketing metrics. Consequently, we study in this paper how to leverage LSH for this task. To be able to consider the most relevant metrics used in the literature, we introduce DeepLsh, a Siamese DNN architecture with an original loss function, that perfectly approximates the locality-sensitivity property even for Jaccard and Cosine metrics for which exact LSH solutions exist. We support this claim with a series of experiments on an original dataset, which we make available. |
|---|---|
| AbstractList | Automatic crash bucketing is a crucial phase in the software de-velopment process for efficiently triaging bug reports. It generally consists in grouping similar reports through clustering techniques. However, with real-time streaming bug collection, systems are needed to quickly answer the question: What are the most similar bugs to a new one?, that is, efficiently find near-duplicates. It is thus natural to consider nearest neighbors search to tackle this problem and especially the well-known locality-sensitive hashing (LSH) to deal with large datasets due to its sublinear performance and theoretical guarantees on the similarity search accuracy. Surprisingly, LSH has not been considered in the crash bucketing literature. It is indeed not trivial to derive hash functions that satisfy the so-called locality-sensitive property for the most advanced crash bucketing metrics. Consequently, we study in this paper how to leverage LSH for this task. To be able to consider the most relevant metrics used in the literature, we introduce DeepLsh, a Siamese DNN architecture with an original loss function, that perfectly approximates the locality-sensitivity property even for Jaccard and Cosine metrics for which exact LSH solutions exist. We support this claim with a series of experiments on an original dataset, which we make available. |
| Author | Raissi, Chedy Mathonat, Romain Bendimerad, Anes Kaytoue, Mehdi Remil, Youcef |
| Author_xml | – sequence: 1 givenname: Youcef surname: Remil fullname: Remil, Youcef email: yre@infologic.fr organization: INSA Lyon, Infologic R&D,Bourg-Lès-Valence,France,26500 – sequence: 2 givenname: Anes surname: Bendimerad fullname: Bendimerad, Anes email: abe@infologic.fr organization: Infologic R&D,Bourg-Lès-Valence,France,26500 – sequence: 3 givenname: Romain surname: Mathonat fullname: Mathonat, Romain email: rma@infologic.fr organization: Infologic R&D,Bourg-Lès-Valence,France,26500 – sequence: 4 givenname: Chedy surname: Raissi fullname: Raissi, Chedy email: chedy.raissi@inria.fr organization: Riot Games,Singapore – sequence: 5 givenname: Mehdi surname: Kaytoue fullname: Kaytoue, Mehdi email: mka@infologic.fr organization: INSA Lyon, Infologic R&D,Bourg-Lès-Valence,France,26500 |
| BookMark | eNotj81KAzEYRaMoWGvXblzkBabmy88kcSf9scKgYHVdMpMvGqyZYSYKfXun6OpeuJwD95KcpTYhIdfA5gBS3QpltWJiLkphQZYnZGa1NZIxzThoeUomoJQpgHN1QWbDEGumpFC6lGJCPpeIXbXd3NFjoVXbuH3Mh2KLaYg5_iDduOGDVuj6FNM7DW1P127I1CVPVyHEJmLK9Gnci-V3t4-Ny0gX_RF6wa7t8yjO2OTYpityHtx-wNl_TsnbevW62BTV88Pj4r4qHFjIhTXWeOk5G89wxcGXzAfkjfJomQheOjEeqK0XoJ00tTS6dp6jBVcGMLWYkps_b0TEXdfHL9cfdjBCRvBS_AIiD1nV |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1145/3597503.3639146 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798400702174 |
| EISSN | 1558-1225 |
| EndPage | 2456 |
| ExternalDocumentID | 10548326 |
| Genre | orig-research |
| GroupedDBID | -~X .4S .DC 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO FEDTE I-F IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-a191t-9898d4d201462521d60dfe2c5de903fd4a3054b9d317a48b487bad2e91a6f18b3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 01:53:13 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a191t-9898d4d201462521d60dfe2c5de903fd4a3054b9d317a48b487bad2e91a6f18b3 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10548326 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-April-14 |
| PublicationDateYYYYMMDD | 2024-04-14 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-April-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings / International Conference on Software Engineering |
| PublicationTitleAbbrev | ICSE |
| PublicationYear | 2024 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssib054357643 ssib055306466 ssj0006499 |
| Score | 2.256624 |
| Snippet | Automatic crash bucketing is a crucial phase in the software de-velopment process for efficiently triaging bug reports. It generally consists in grouping... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2445 |
| SubjectTerms | Approximate nearest neighbors Computer bugs Crash deduplication Hash functions Locality-sensitive hashing Measurement Nearest neighbor methods Neural networks Search problems Siamese neural networks Software Stack trace similarity |
| Title | DeepLSH: Deep Locality-Sensitive Hash Learning for Fast and Efficient Near-Duplicate Crash Report Detection |
| URI | https://ieeexplore.ieee.org/document/10548326 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAtWjEwlUcRb3lgdYljJ45Z-1CHqqpUkLpVjn0BhJRWbcrv5-yk0IWBzUqUyPLFd9_lfHeEPKaiyLXREYuUVkzKApgBZxlIXTgeI6JyG5pNqOk0Wyz0rElWD7kwABAOn0HPD0Ms363szv8qwx2OfI280SItpVSdrLX_eBK0--qgtpRvh5NKzyqNWk6R7ZvaPlwmTwJJOolET6CJDvh70Fwl2JZR55-zOiXd3yw9OvuxP2fkCMpz0tm3aaDNrr0gnwOA9WQ-fqZ-QCfeeiF7s7k_u-61HR2b7TttKq2-UcRYOjLbiprS0WEoMYEToFO8zwa7Ot4NtL_xD9X8ji-uwpGuskteR8OX_pg1PRaYQU-tYr59pJMu9jVkYjTlLo1cAbFNHOhIFE4aVAgy1w45w8gsR_8mNy4GzU1a8CwXl6Rdrkq4IhQFW1iLgGBRDoCuL6jIoj-XZ5YDJOKadP3iLdd1GY3lft1u_rh-S05iJAgfuuHyjrSrzQ7uybH9qj62m4cg_G85w61W |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LT8MwDIAjGEhwGo8h3uTANaOP9BGue6iIUk3akHab0sQFhNRNW8fvx0k72IUDt6hVqigP-3Md24Tch36RCykc5kQiYpwXwCRoxYCLQrseIqqrbLGJKMvi6VSMmmB1GwsDAPbyGXRN0_ry9Vytza8yPOHI18gbu2Qv4Nxz63CtzfYJUPNHW9mlTEGckBtaaQRziHTfZPdxefDgI0sHjt_1UUlbAN4qr2K1y7D9z3Edkc5vnB4d_WigY7ID5Qlpbwo10ObcnpLPPsAiHSeP1DRoavQX0jcbm9vrRt7RRK7eaZNr9Y0iyNKhXFVUlpoObJIJHADN8D3rr2uPN9De0nSqCR4_XNlLXWWHvA4Hk17CmioLTKKtVjFTQFJz7ZksMh4qcx06ugBPBRqE4xeaSxQJPBcaSUPyOEcLJ5faA-HKsHDj3D8jrXJewjmhuLSFUogICtcB0PiFyFFo0eWxcgEC_4J0zOTNFnUijdlm3i7_eH5HDpLJSzpLn7LnK3LoIU8YR47Lr0mrWq7hhuyrr-pjtby1G-EbbiWwnQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=DeepLSH%3A+Deep+Locality-Sensitive+Hash+Learning+for+Fast+and+Efficient+Near-Duplicate+Crash+Report+Detection&rft.au=Remil%2C+Youcef&rft.au=Bendimerad%2C+Anes&rft.au=Mathonat%2C+Romain&rft.au=Raissi%2C+Chedy&rft.date=2024-04-14&rft.pub=ACM&rft.eissn=1558-1225&rft.spage=2445&rft.epage=2456&rft_id=info:doi/10.1145%2F3597503.3639146&rft.externalDocID=10548326 |