STM-Multifrontal QR: Streaming Task Mapping Multifrontal QR Factorization Empowered by GCN

Multifrontal QR algorithm, which consists of symbolic analysis and numerical factorization, is a high-performance algorithm for orthogonal factorizing sparse matrix. In this work, a graph convolutional network (GCN) for adaptively selecting the optimal reordering algorithm is proposed in symbolic an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SC21: International Conference for High Performance Computing, Networking, Storage and Analysis s. 01 - 14
Hlavní autoři: Lin, Shengle, Yang, Wangdong, Wang, Haotian, Tsai, Qinyun, Li, Kenli
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 14.11.2021
Témata:
ISSN:2167-4337
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Multifrontal QR algorithm, which consists of symbolic analysis and numerical factorization, is a high-performance algorithm for orthogonal factorizing sparse matrix. In this work, a graph convolutional network (GCN) for adaptively selecting the optimal reordering algorithm is proposed in symbolic analysis. Using our GCN adaptive classifier, the average numerical factorization time is reduced by 20.78% compared with the default approach, and the additional memory overhead is approximately 4% higher than that of prior work. Moreover, for numerical factorization, an optimized tasks stream parallel processing strategy is proposed and a more efficient computing task mapping framework for NUMA architecture is adopted in this paper, which called STM-Multifrontal QR factorization. Numerical experiments on the TaiShan Server show average 1.22x performance gains over the original SuiteSparseQR. Nearly 80% of datasets have achieved better performance compared with the MKL sparse QR on Intel Xeon 6248.
AbstractList Multifrontal QR algorithm, which consists of symbolic analysis and numerical factorization, is a high-performance algorithm for orthogonal factorizing sparse matrix. In this work, a graph convolutional network (GCN) for adaptively selecting the optimal reordering algorithm is proposed in symbolic analysis. Using our GCN adaptive classifier, the average numerical factorization time is reduced by 20.78% compared with the default approach, and the additional memory overhead is approximately 4% higher than that of prior work. Moreover, for numerical factorization, an optimized tasks stream parallel processing strategy is proposed and a more efficient computing task mapping framework for NUMA architecture is adopted in this paper, which called STM-Multifrontal QR factorization. Numerical experiments on the TaiShan Server show average 1.22x performance gains over the original SuiteSparseQR. Nearly 80% of datasets have achieved better performance compared with the MKL sparse QR on Intel Xeon 6248.
Author Li, Kenli
Wang, Haotian
Lin, Shengle
Tsai, Qinyun
Yang, Wangdong
Author_xml – sequence: 1
  givenname: Shengle
  surname: Lin
  fullname: Lin, Shengle
  email: lsl036@hnu.edu.cn
  organization: Hunan University,Changsha,China
– sequence: 2
  givenname: Wangdong
  surname: Yang
  fullname: Yang, Wangdong
  email: yangwangdong@hnu.edu.cn
  organization: Hunan University,Changsha,China
– sequence: 3
  givenname: Haotian
  surname: Wang
  fullname: Wang, Haotian
  email: wanghaotian@hnu.edu.cn
  organization: Hunan University,Changsha,China
– sequence: 4
  givenname: Qinyun
  surname: Tsai
  fullname: Tsai, Qinyun
  email: hnutsai@hnu.edu.cn
  organization: Hunan University,Changsha,China
– sequence: 5
  givenname: Kenli
  surname: Li
  fullname: Li, Kenli
  email: lkl@hnu.edu.cn
  organization: Hunan University,Changsha,China
BookMark eNpdjz1PwzAYhA0CiVIyM7D4D6T4tZ3YLxuK2oLUgKBhYamc2EaBfClJhcqvJwgmptPpHp3uzslJ0zaOkEtgCwAZXQsZaQ1qIaSKAfGIBKj0FDChpeRwTGYcYhVKIdQZCYbhnTHGtQLB2Yy8brM0TPfVWPq-bUZT0afnG7ode2fqsnmjmRk-aGq67sf84-jKFGPbl19mLNuGLuuu_XS9szQ_0HXycEFOvakGF_zpnLyslllyF24e1_fJ7SY0gGwMrUA3zZZolZWR9Zij9R45eKYQTJFbbXmkjMgdK6LYOoyQa6-R8SKfTok5ufrtLZ1zu64va9MfdojAgKP4BprCVCc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3458817.3476199
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781450384421
1450384420
EISSN 2167-4337
EndPage 14
ExternalDocumentID 9910129
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 92055213,61872127,61751204
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2018YFB0204302
  funderid: 10.13039/501100012166
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-a190t-d39e19949d7d45df9b9dff921f0791acbd8d257a3be0c56de95928f8902cb4333
IEDL.DBID RIE
IngestDate Wed Aug 27 02:18:42 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a190t-d39e19949d7d45df9b9dff921f0791acbd8d257a3be0c56de95928f8902cb4333
PageCount 14
ParticipantIDs ieee_primary_9910129
PublicationCentury 2000
PublicationDate 2021-Nov.-14
PublicationDateYYYYMMDD 2021-11-14
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.-14
  day: 14
PublicationDecade 2020
PublicationTitle SC21: International Conference for High Performance Computing, Networking, Storage and Analysis
PublicationTitleAbbrev SC
PublicationYear 2021
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002871320
ssj0003204180
Score 1.8178246
Snippet Multifrontal QR algorithm, which consists of symbolic analysis and numerical factorization, is a high-performance algorithm for orthogonal factorizing sparse...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Approximation algorithms
Classification algorithms
Computer architecture
Graph Convolutional Network
High performance computing
Multicore processing
Multifrontal QR Factorization
NUMA Multicore Architecture
Parallel processing
Performance gain
Task Mapping Optimization
Task Stream Processing
Title STM-Multifrontal QR: Streaming Task Mapping Multifrontal QR Factorization Empowered by GCN
URI https://ieeexplore.ieee.org/document/9910129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MuE3iOI5ZqxYGWhUoqGKp7NhGCPqhfiDx7_GloQjEwuZEiRU5ct7l7t57AOces3SiAkZF6Bz1X0lNFTeaZiJOeWAYT3J-xeON6PXS4VD2S3Cx4cJYa_PmM9vAYV7LN9Nshamypo9lMG9ShrIQYs3V2uRTMPJnReiDx34ch2lQqPmEMW8yJGWGosFi_HWXP-xUcjTpVP_3HDtQ_6blkf4GcHahZCd7UP3yZSDFNq3B0_2gS3NmrUN5AvVGbu8uCdaf1djfSAZq8Uq6CpUZnsmv60gnN-Ap2JmkPZ6hjZo1RH-Qq1avDg-d9qB1TQsPBao81C-pYdKi_K80wsTcOKmlcU5GoQuEDFWmTWr8rlVM2yDjibGSyyh1WH3MdMwY24fKZDqxB0BsFCjt50ui1HrYT2Vk_GSWR5zpQGh1CDVcqtFsLZMxKlbp6O_Tx7AdYXsIdtTFJ1BZzlf2FLay9-XLYn6Wv9tP9Yijcg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VggSnAi1ixweOuE28JDHXqqWINipQUMWlsmMHIeiiLkj8PXYaikBcuDlRYkWOnDeZmfcewLnFLBVIj-LQT1Nsv5IKS64VTkIWcU9THmT8isd2GMdRvy-6BbhYcWGMMVnzmam6YVbL1-Nk4VJlNRvLuLzJGqxzxoi_ZGutMiou9qd58OOO7Zj5kZfr-fiM16ijZfphlTL38y5-GKpkeNIs_e9JtqHyTcxD3RXk7EDBjHah9OXMgPKNWoan-14HZ9za1AkUyDd0e3eJXAVaDu2NqCdnr6gjnTbDM_p1HWpmFjw5PxM1hhNnpGY0Uh_oqh5X4KHZ6NVbOHdRwNKC_RxrKowTABY61IzrVCih01QQP_VC4ctE6UjbfSupMl7CA20EFyRKXf0xUYxSugfF0Xhk9gEZ4kll5wtIZCzwR4JoO5nhhFPlhUoeQNkt1WCyFMoY5Kt0-PfpM9hs9TrtQfs6vjmCLeKaRVx_HTuG4ny6MCewkbzPX2bT0-w9fwKlr6a5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=SC21%3A+International+Conference+for+High+Performance+Computing%2C+Networking%2C+Storage+and+Analysis&rft.atitle=STM-Multifrontal+QR%3A+Streaming+Task+Mapping+Multifrontal+QR+Factorization+Empowered+by+GCN&rft.au=Lin%2C+Shengle&rft.au=Yang%2C+Wangdong&rft.au=Wang%2C+Haotian&rft.au=Tsai%2C+Qinyun&rft.date=2021-11-14&rft.pub=ACM&rft.eissn=2167-4337&rft.spage=01&rft.epage=14&rft_id=info:doi/10.1145%2F3458817.3476199&rft.externalDocID=9910129