Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-parameter Flag Setting
In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood–Paley square function and area integral, Riesz transforms a...
Uloženo v:
| Hlavní autoři: | , , , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | angličtina |
| Vydáno: |
Providence, Rhode Island
American Mathematical Society
2022
|
| Vydání: | 1 |
| Edice: | Memoirs of the American Mathematical Society |
| Témata: | |
| ISBN: | 1470453452, 9781470453459 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag
setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood–Paley square function
and area integral, Riesz transforms and the atomic decomposition in the multi-parameter flag setting. The novel ingredients in this
paper include (1) establishing appropriate discrete Calderón reproducing formulae in the flag setting and a version of the
Plancherel–Pólya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels
and flag version of harmonic functions; (3) developing an atomic decomposition via the finite speed propagation and area function in
terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the
multi-parameter Hardy space with the flag structure. |
|---|---|
| AbstractList | In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag
setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood–Paley square function
and area integral, Riesz transforms and the atomic decomposition in the multi-parameter flag setting. The novel ingredients in this
paper include (1) establishing appropriate discrete Calderón reproducing formulae in the flag setting and a version of the
Plancherel–Pólya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels
and flag version of harmonic functions; (3) developing an atomic decomposition via the finite speed propagation and area function in
terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the
multi-parameter Hardy space with the flag structure. View the abstract. |
| Author | Han, Yongsheng Wick, Brett D. Lee, Ming-Yi Li, Ji |
| Author_xml | – sequence: 1 givenname: Yongsheng surname: Han fullname: Han, Yongsheng – sequence: 2 givenname: Ming-Yi surname: Lee fullname: Lee, Ming-Yi – sequence: 3 givenname: Ji surname: Li fullname: Li, Ji – sequence: 4 givenname: Brett D. surname: Wick fullname: Wick, Brett D. |
| BackLink | https://cir.nii.ac.jp/crid/1130293545593070498$$DView record in CiNii |
| BookMark | eNpVkc9y0zAQhwW0DEnJgTfQTDnATE1Xf2xJxxIaYCYdGMhw9Sj2uhG1pWAplMKFd-ANeRLsJhcuq8N-8-2uflNy5INHQp4xeMXAwHmHXThnQokHZGaUZlKBVJyr4iGZMCNVVnDOHpHpfSMXMudHZAJQ5JnhRXFMphw4B6mFLB4PlJCC50NXPCGzGL8CwKASWuQT8uvK_nCdbeli56vkgo9ndOlSavE2hPrv7z8fbYt3dLXB0N-d0U8O40-66q2PTei7SK2v6UUKnavoG6xCtw3RjRrqPE0bpFe7Nrlsa3vbYcKeLlp7TT9jSs5fPyXHjW0jzg7vCfmyuFzN32XLD2_fzy-WmWUGtMkajtYKKdfG6uHuCqWquUCAulJGa6OgxhobjUJXgiFTa12zfN3U0qBCDeKEvNyLbbzB27gJbYrl9xbXIdzE8r8PHtgXe3bbh287jKm8xyr0qbdtefl6zo0Sw2Kj9vke9c6VlRsrYwK4EbnMcyNgkBo9YKeH6V0sDzMZlGPQ5Rh0OQYt_gFbC5G- |
| ContentType | eBook Book |
| Copyright | Copyright 2022 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2022 American Mathematical Society |
| DBID | RYH |
| DEWEY | 515/.2433 |
| DOI | 10.1090/memo/1373 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470472276 1470472279 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470472276 EBC29731900 BC16783095 10_1090_memo_1373 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ABARN ABQPQ ADAIA ADVEM AERYV AFOJC AHWGJ AJFER BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a19089-f2eaa344b9a8221ce47d23e00dc7988970dedef8e38c31e17b8d15bfd49e7e803 |
| ISBN | 1470453452 9781470453459 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000060553&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 03:08:04 EST 2024 Wed Dec 10 11:01:51 EST 2025 Fri Jun 27 00:50:22 EDT 2025 Thu Aug 14 15:25:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | flag Hardy space flag Riesz transforms maximal function Littlewood–Paley square function atomic decomposition Lusin area integral |
| LCCN | 2022048346 |
| LCCallNum_Ident | QA331 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a19089-f2eaa344b9a8221ce47d23e00dc7988970dedef8e38c31e17b8d15bfd49e7e803 |
| Notes | September 2022, volume 279, number 1373 (second of 6 numbers) Includes bibliographical references (p. 101-102) |
| OCLC | 1343250653 |
| PQID | EBC29731900 |
| PageCount | 118 |
| ParticipantIDs | askewsholts_vlebooks_9781470472276 proquest_ebookcentral_EBC29731900 nii_cinii_1130293545593070498 ams_ebooks_10_1090_memo_1373 |
| PublicationCentury | 2000 |
| PublicationDate | 2022. |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022. |
| PublicationDecade | 2020 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2022 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0002763835 ssib052606432 ssj0008047 |
| Score | 2.6595898 |
| Snippet | In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag
setting. These characterisations... View the abstract. |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Hardy spaces Littlewood-Paley theory Maximal functions |
| TableOfContents | Acknowledgement
--
Notation
--
Introduction and Statement of Main Results, Applications
--
Flag Littlewood–Paley Estimate: <inline-formula content-type="math/mathml">
‖ g
F ( f )
‖ 1
\|g_F(f)\|_1 </inline-formula>,
<inline-formula content-type="math/mathml"> ‖ S F ( f ) ‖ 1 \|S_F(f)\|_1 </inline-formula> and <inline-formula
content-type="math/mathml"> ‖<!-- ‖
--> S F ( U
) ‖ 1
\|S_F(U)\|_1
</inline-formula>
--
Estimates of Area Functions, Maximal Functions and Riesz Transforms via Flag Poisson Integral
Technique
--
Flag Maximal Functions: from Poisson Kernel to General Schwartz Kernels
--
Atomic Decompositions of Flag Hardy Spaces
--
Estimates of Riesz Transforms and Area Function via Atomic Decomposition Cover -- Title page -- Acknowledgement -- Notation -- Chapter 1. Introduction and Statement of Main Results, Applications -- 1.1. Background and Main Results -- 1.2. Statement of Main Results -- 1.3. Strategy of Proofs of the Main Results -- 1.4. Applications and Related Open Questions -- Chapter 2. Flag Littlewood-Paley Estimate: | _{ }( )|₁, | _{ }( )|₁ and | _{ }( )|₁ -- 2.1. Discrete Calderón Reproducing Formula -- 2.2. Flag Plancherel-Pólya Type Inequalities -- 2.3. The Equivalence of | _{ }( )|₁ and | _{ }( )|₁ -- 2.4. The Estimate | _{ }( )|₁≲| _{ }( )|₁ -- Chapter 3. Estimates of Area Functions, Maximal Functions and Riesz Transforms via Flag Poisson Integral Technique -- 3.1. The Estimate | _{ }( )|₁≲| *|₁ -- 3.2. The Estimate | *|₁≲| ⁺|₁ -- 3.3. The Estimate | ⁺|₁≲∑ⱼ₌₁^{ + }∑_{ =1}^{ }| _{ , }( )|₁+| |₁ -- Chapter 4. Flag Maximal Functions: from Poisson Kernel to General Schwartz Kernels -- 4.1. The Equivalence | *|₁≈| *ᵩ( )|₁ -- 4.2. The Equivalence | ⁺|₁≈| ⁺ᵩ( )|₁ -- Chapter 5. Atomic Decompositions of Flag Hardy Spaces -- 5.1. Heat Kernel and Finite Speed Propagation -- 5.2. Atomic Decomposition for ¹_{ }(ℝⁿ×ℝ^{ }). -- 5.3. Proof of the Atomic Decomposition -- Chapter 6. Estimates of Riesz Transforms and Area Function via Atomic Decomposition -- Bibliography -- Back Cover |
| Title | Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-parameter Flag Setting |
| URI | https://www.ams.org/memo/1373/ https://cir.nii.ac.jp/crid/1130293545593070498 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=29731900 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470472276 |
| Volume | 279 |
| WOSCitedRecordID | wos0000060553&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdo4UBPfIqyDRnErQtLYhfbR1oKiI-xwxjbKcqHPSLWdFrKVPjrec92kpEdEAcuUW2ltuKf5fds_97vEfLcqCiP40wGMkvTgMeGB2BnRKAll0xnguU2wvvoo9jfl8fH6sBn26xtOgFRVXKzUef_FWqoA7AxdPYf4G4bhQr4DaDDE2CHZ88jbos-IVO6KZcYjwimyjbv9twoUozEmuAAXUIXuehGFjbJv5y6OXquTqz51RrDlGEZQq65J3Q1XEhLPgxQLHyJJJqJOUtPJ7W2zOluJbPL2MmqOq2_6a7eE34-wavBSdnWWi7B-7b81ed1nyF9ePL6xdUziTjunUl0l02t9CxKm6xabZN2AxtxAT4l404V_NpyHirkPy71coUHDMwlPenpY8_mERhcBq7igAzES9iA33y7-PzlQ3vSFsMSCn6mjerzvcWN2FfTe6M5pcI97G0P-7Lau_WIjNL6OxgcMEZrKA2qsrxmt60zcniHDDFA5S65oat7ZNR9fH2f_PRzgLZzYJf2ZwB1M2CXWvxphz8F_KnDn_6BPy0r_BPt4U8Rf-rxf0CO3iwO5-8Cn1wjSCO86w1MrNOUcZ6pFJzEKNdcFDHTYVjkqGGnRFjoQhupmcxZpCORySKaZqbgSgstQ_aQDKtVpR8RahT43WKqoyms7sYgv06DIx_qnBfSZNMx2YaRTOz1f5042kOY4EAnONBj8uzKECeXZ_7FBiERA4RjsgMjn-QlPiO8blcMvP-pQqPFlRyTpw0mriNPbk4Ws7nNz6bC8PFf2tgit7vZvE2G64sfeofcyi_XZX3xxM-r32FLgFU |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Maximal+functions%2C+Littlewood-Paley+theory%2C+Riesz+Transforms+and+Atomic+Decomposition+in+the+multi-parameter+flag+setting&rft.au=Han%2C+Yongsheng&rft.au=Lee%2C+Ming-Yi&rft.au=Li%2C+Ji&rft.au=Wick%2C+Brett+D.&rft.date=2022-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470453459&rft_id=info:doi/10.1090%2Fmemo%2F1373&rft.externalDocID=BC16783095 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470472276.jpg |

