Spectral theory of partial differential equations

These lectures present highlights of spectral theory for selfadjoint partial differential operators, emphasizing problems with discrete spectrum. Spectral methods permeate the theory of partial differential equations. Linear PDEs are often solved by separation of variables, getting eigenvalues when...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Spectral Theory and Applications Ročník 720; s. 23 - 55
Hlavní autor: Laugesen, Richard S.
Médium: Kapitola
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society
Centre de Recherches Mathematiques
Edice:Contemporary Mathematics
ISBN:147043556X, 9781470435561
ISSN:0271-4132, 1098-3627
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:These lectures present highlights of spectral theory for selfadjoint partial differential operators, emphasizing problems with discrete spectrum. Spectral methods permeate the theory of partial differential equations. Linear PDEs are often solved by separation of variables, getting eigenvalues when the spectrum is discrete and continuous spectrum when it is not. Further, linearized stability of a steady state or traveling wave of a nonlinear PDE depends on the sign of the first eigenvalue, or more generally on the location of the spectrum in the complex plane. We define eigenvalues in terms of quadratic forms on a general Hilbert space. Particular applications include the eigenvalues of the Laplacian under Dirichlet and Neumann boundary conditions. Rayleigh-type principles characterize the first and higher eigenvalues, and lead to a number of comparison and domain monotonicity properties. Lastly, the role of eigenvalues in stability analysis is investigated for a reaction-diffusion equation in one spatial dimension. Computable examples are presented before the general theory. Some ideas are used before being properly defined, but overall students gain a better understanding of the purpose of the theory by gaining first a solid grounding in specific examples.
ISBN:147043556X
9781470435561
ISSN:0271-4132
1098-3627
DOI:10.1090/conm/720/14521