Improved Stance Prediction in a User Similarity Feature Space

Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 s. 145 - 148
Hlavní autoři: Darwish, Kareem, Magdy, Walid, Zanouda, Tahar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 31.07.2017
Edice:ACM Conferences
Témata:
ISBN:1450349935, 9781450349932
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' interaction elements, such as retweeted accounts and mentioned hashtags, to compute the similarities between users and to classify new users in a user similarity feature space. We show that this approach significantly improves stance prediction on two datasets that differ in terms of language, topic, and cultural background.
ISBN:1450349935
9781450349932
DOI:10.1145/3110025.3110112