Improved Stance Prediction in a User Similarity Feature Space
Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' int...
Uloženo v:
| Abstract | Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' interaction elements, such as retweeted accounts and mentioned hashtags, to compute the similarities between users and to classify new users in a user similarity feature space. We show that this approach significantly improves stance prediction on two datasets that differ in terms of language, topic, and cultural background. |
|---|---|
| AbstractList | Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' interaction elements, such as retweeted accounts and mentioned hashtags, to compute the similarities between users and to classify new users in a user similarity feature space. We show that this approach significantly improves stance prediction on two datasets that differ in terms of language, topic, and cultural background. |
| Author | Magdy, Walid Darwish, Kareem Zanouda, Tahar |
| Author_xml | – sequence: 1 givenname: Kareem surname: Darwish fullname: Darwish, Kareem email: kdarwish@hbku.edu.qa organization: Qatar Computing Research Institute, HBKU, Qatar – sequence: 2 givenname: Walid surname: Magdy fullname: Magdy, Walid email: wmagdy@inf.ed.ac.uk organization: School of Informatics, The University of Edinburgh, UK – sequence: 3 givenname: Tahar surname: Zanouda fullname: Zanouda, Tahar email: tzanouda@hbku.edu.qa organization: Qatar Computing Research Institute, HBKU, Qatar |
| BookMark | eNqNj09Lw0AQxRdU0Naeve7RS-LMbv7twYMUWwsFhdRzmN1MYLVJyiYKfntTzAfwMO_Be4-B30Jcdn3HQtwhxIhJ-qARAVQanx1RXYjFlIJOjNHptVgNwwdMPRbT6RvxuGtPof_mWpYjdY7lW-Dau9H3nfSdJPk-cJClb_2Rgh9_5IZp_AosyxM5vhVXDR0HXs2-FIfN82H9Eu1ft7v10z4iLLSKiqxxyIki00DiTG0KglozG6cI8zyzznIOXKeYpTkUZKxTjZ0kt8AK9FLc_70l11a27z-HCqE601YzbTXTTtP4n9PKBs-N_gU_61bO |
| ContentType | Conference Proceeding |
| Copyright | 2017 ACM |
| Copyright_xml | – notice: 2017 ACM |
| DOI | 10.1145/3110025.3110112 |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| Editor | Diesner, Jana Ferrari, Elena Xu, Guandong |
| Editor_xml | – sequence: 1 givenname: Jana surname: Diesner fullname: Diesner, Jana – sequence: 2 givenname: Elena surname: Ferrari fullname: Ferrari, Elena – sequence: 3 givenname: Guandong surname: Xu fullname: Xu, Guandong |
| EndPage | 148 |
| GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ACM ALMA_UNASSIGNED_HOLDINGS APO BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK GUFHI IEGSK LHSKQ OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-a1832-86fc1e42a9f04c9d98a0d3ee9c2a1776bcbe70ed5165708a9bc2fbbc27b0e203 |
| ISBN | 1450349935 9781450349932 |
| IngestDate | Thu Jul 10 05:53:10 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org |
| LinkModel | OpenURL |
| MeetingName | ASONAM '17: Advances in Social Networks Analysis and Mining 2017 |
| MergedId | FETCHMERGED-LOGICAL-a1832-86fc1e42a9f04c9d98a0d3ee9c2a1776bcbe70ed5165708a9bc2fbbc27b0e203 |
| OpenAccessLink | https://www.research.ed.ac.uk/en/publications/98252b21-eaf6-4a13-8c6b-ecd4452364f7 |
| PageCount | 4 |
| ParticipantIDs | acm_books_10_1145_3110025_3110112 acm_books_10_1145_3110025_3110112_brief |
| PublicationCentury | 2000 |
| PublicationDate | 20170731 |
| PublicationDateYYYYMMDD | 2017-07-31 |
| PublicationDate_xml | – month: 07 year: 2017 text: 20170731 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY, USA |
| PublicationPlace_xml | – name: New York, NY, USA |
| PublicationSeriesTitle | ACM Conferences |
| PublicationTitle | Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 ASONAM 2017 : proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining : Sydney, Australia, 31 July-03 August, 2017 |
| PublicationYear | 2017 |
| Publisher | ACM |
| Publisher_xml | – name: ACM |
| SSID | ssj0002180213 |
| Score | 1.9316567 |
| Snippet | Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown... |
| SourceID | acm |
| SourceType | Publisher |
| StartPage | 145 |
| SubjectTerms | Computing methodologies Computing methodologies -- Artificial intelligence Computing methodologies -- Artificial intelligence -- Natural language processing Computing methodologies -- Artificial intelligence -- Natural language processing -- Discourse, dialogue and pragmatics Computing methodologies -- Artificial intelligence -- Natural language processing -- Lexical semantics Human-centered computing Human-centered computing -- Collaborative and social computing Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools -- Social networking sites Information systems Information systems -- Information retrieval Information systems -- Information retrieval -- Document representation Information systems -- Information retrieval -- Document representation -- Content analysis and feature selection Information systems -- Information retrieval -- Retrieval tasks and goals Information systems -- Information retrieval -- Retrieval tasks and goals -- Sentiment analysis Information systems -- Information systems applications Information systems -- Information systems applications -- Collaborative and social computing systems and tools Information systems -- Information systems applications -- Collaborative and social computing systems and tools -- Social networking sites Information systems -- World Wide Web Information systems -- World Wide Web -- Web applications Information systems -- World Wide Web -- Web applications -- Social networks |
| Title | Improved Stance Prediction in a User Similarity Feature Space |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxIETX0MMtslISByqQJw4cXzYAW0gLqsqrYjdIttxWaQtQ82-JP553rOduBQk4MDFba32Rfbv1e_D74OQ1yCymqxUZdKk2iRcNzpRvFJJZkVuuTCKS-2aTYjZrDo9lfPJ5PuQC3NzLrquuruT3_4r1DAHYGPq7D_APRKFCXgPoMMIsMO4oRH_VvjMx8l-uP8H6SumaNVh8YTD4w0vYMz5w4uD9z4mwEXJhtTdmY8U72MBExec4TpLONrrbOedFF6LRZLzFd4EDRGVavoZ9mB60l60YFGjAYAqKN5hnIDtPvLYkVrdtv3ZkKwWvMvOb_7VC4UvYD40o9NbdZfXjdOCF-pM-XBj3GvbH-B64wp_cnKw0Xs6suVxtHsZL7CojsyLtYOX-aKUQYYzX73zV_HAsZJGjmXysuItvjLsUH1PiNSn_o3uuQwr47mulPFxQ4Ww8DkLlaJg4t0GSVR1zMWaorJ4RLbjYmlkhcdkYrsn5OHQw4OGI_0pGQGjHjAaAaNtRxVFwGgEjAbAqANsmyw-flgcfkpCS41E4dmdVOXSMMszJZcpN7KRlUqb3FppMsWEKLXRVqS2KRiGRFVKapMtNQxCpzZL82dkq7vs7HNCdQE_kpWxghluSq6NSYtGYvV-o7TJd8gr2IIa_xh97bPfizpsUx22aYe8-eN3ag3csnzxF9RekgeRdXbJ1tXq2u6R--bmqu1X-w7eH-_rZd8 |
| linkProvider | IEEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+2017&rft.atitle=Improved+Stance+Prediction+in+a+User+Similarity+Feature+Space&rft.au=Darwish%2C+Kareem&rft.au=Magdy%2C+Walid&rft.au=Zanouda%2C+Tahar&rft.series=ACM+Conferences&rft.date=2017-07-31&rft.pub=ACM&rft.isbn=1450349935&rft.spage=145&rft.epage=148&rft_id=info:doi/10.1145%2F3110025.3110112 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/sc.gif&client=summon&freeimage=true |

