Improved Stance Prediction in a User Similarity Feature Space

Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' int...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 s. 145 - 148
Hlavní autoři: Darwish, Kareem, Magdy, Walid, Zanouda, Tahar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY, USA ACM 31.07.2017
Edice:ACM Conferences
Témata:
ISBN:1450349935, 9781450349932
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' interaction elements, such as retweeted accounts and mentioned hashtags, to compute the similarities between users and to classify new users in a user similarity feature space. We show that this approach significantly improves stance prediction on two datasets that differ in terms of language, topic, and cultural background.
AbstractList Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown that using users' historical or non-relevant tweets can be used to predict stance. We build on prior work by making use of users' interaction elements, such as retweeted accounts and mentioned hashtags, to compute the similarities between users and to classify new users in a user similarity feature space. We show that this approach significantly improves stance prediction on two datasets that differ in terms of language, topic, and cultural background.
Author Magdy, Walid
Darwish, Kareem
Zanouda, Tahar
Author_xml – sequence: 1
  givenname: Kareem
  surname: Darwish
  fullname: Darwish, Kareem
  email: kdarwish@hbku.edu.qa
  organization: Qatar Computing Research Institute, HBKU, Qatar
– sequence: 2
  givenname: Walid
  surname: Magdy
  fullname: Magdy, Walid
  email: wmagdy@inf.ed.ac.uk
  organization: School of Informatics, The University of Edinburgh, UK
– sequence: 3
  givenname: Tahar
  surname: Zanouda
  fullname: Zanouda, Tahar
  email: tzanouda@hbku.edu.qa
  organization: Qatar Computing Research Institute, HBKU, Qatar
BookMark eNqNj09Lw0AQxRdU0Naeve7RS-LMbv7twYMUWwsFhdRzmN1MYLVJyiYKfntTzAfwMO_Be4-B30Jcdn3HQtwhxIhJ-qARAVQanx1RXYjFlIJOjNHptVgNwwdMPRbT6RvxuGtPof_mWpYjdY7lW-Dau9H3nfSdJPk-cJClb_2Rgh9_5IZp_AosyxM5vhVXDR0HXs2-FIfN82H9Eu1ft7v10z4iLLSKiqxxyIki00DiTG0KglozG6cI8zyzznIOXKeYpTkUZKxTjZ0kt8AK9FLc_70l11a27z-HCqE601YzbTXTTtP4n9PKBs-N_gU_61bO
ContentType Conference Proceeding
Copyright 2017 ACM
Copyright_xml – notice: 2017 ACM
DOI 10.1145/3110025.3110112
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Editor Diesner, Jana
Ferrari, Elena
Xu, Guandong
Editor_xml – sequence: 1
  givenname: Jana
  surname: Diesner
  fullname: Diesner, Jana
– sequence: 2
  givenname: Elena
  surname: Ferrari
  fullname: Ferrari, Elena
– sequence: 3
  givenname: Guandong
  surname: Xu
  fullname: Xu, Guandong
EndPage 148
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ACM
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
LHSKQ
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a1832-86fc1e42a9f04c9d98a0d3ee9c2a1776bcbe70ed5165708a9bc2fbbc27b0e203
ISBN 1450349935
9781450349932
IngestDate Thu Jul 10 05:53:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org
LinkModel OpenURL
MeetingName ASONAM '17: Advances in Social Networks Analysis and Mining 2017
MergedId FETCHMERGED-LOGICAL-a1832-86fc1e42a9f04c9d98a0d3ee9c2a1776bcbe70ed5165708a9bc2fbbc27b0e203
OpenAccessLink https://www.research.ed.ac.uk/en/publications/98252b21-eaf6-4a13-8c6b-ecd4452364f7
PageCount 4
ParticipantIDs acm_books_10_1145_3110025_3110112
acm_books_10_1145_3110025_3110112_brief
PublicationCentury 2000
PublicationDate 20170731
PublicationDateYYYYMMDD 2017-07-31
PublicationDate_xml – month: 07
  year: 2017
  text: 20170731
  day: 31
PublicationDecade 2010
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017
ASONAM 2017 : proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining : Sydney, Australia, 31 July-03 August, 2017
PublicationYear 2017
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002180213
Score 1.9316567
Snippet Predicting the stance of social media users on a topic can be challenging, particularly for users who never express explicit stances. Earlier work has shown...
SourceID acm
SourceType Publisher
StartPage 145
SubjectTerms Computing methodologies
Computing methodologies -- Artificial intelligence
Computing methodologies -- Artificial intelligence -- Natural language processing
Computing methodologies -- Artificial intelligence -- Natural language processing -- Discourse, dialogue and pragmatics
Computing methodologies -- Artificial intelligence -- Natural language processing -- Lexical semantics
Human-centered computing
Human-centered computing -- Collaborative and social computing
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools
Human-centered computing -- Collaborative and social computing -- Collaborative and social computing systems and tools -- Social networking sites
Information systems
Information systems -- Information retrieval
Information systems -- Information retrieval -- Document representation
Information systems -- Information retrieval -- Document representation -- Content analysis and feature selection
Information systems -- Information retrieval -- Retrieval tasks and goals
Information systems -- Information retrieval -- Retrieval tasks and goals -- Sentiment analysis
Information systems -- Information systems applications
Information systems -- Information systems applications -- Collaborative and social computing systems and tools
Information systems -- Information systems applications -- Collaborative and social computing systems and tools -- Social networking sites
Information systems -- World Wide Web
Information systems -- World Wide Web -- Web applications
Information systems -- World Wide Web -- Web applications -- Social networks
Title Improved Stance Prediction in a User Similarity Feature Space
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxIETX0MMtslISByqQJw4cXzYAW0gLqsqrYjdIttxWaQtQ82-JP553rOduBQk4MDFba32Rfbv1e_D74OQ1yCymqxUZdKk2iRcNzpRvFJJZkVuuTCKS-2aTYjZrDo9lfPJ5PuQC3NzLrquuruT3_4r1DAHYGPq7D_APRKFCXgPoMMIsMO4oRH_VvjMx8l-uP8H6SumaNVh8YTD4w0vYMz5w4uD9z4mwEXJhtTdmY8U72MBExec4TpLONrrbOedFF6LRZLzFd4EDRGVavoZ9mB60l60YFGjAYAqKN5hnIDtPvLYkVrdtv3ZkKwWvMvOb_7VC4UvYD40o9NbdZfXjdOCF-pM-XBj3GvbH-B64wp_cnKw0Xs6suVxtHsZL7CojsyLtYOX-aKUQYYzX73zV_HAsZJGjmXysuItvjLsUH1PiNSn_o3uuQwr47mulPFxQ4Ww8DkLlaJg4t0GSVR1zMWaorJ4RLbjYmlkhcdkYrsn5OHQw4OGI_0pGQGjHjAaAaNtRxVFwGgEjAbAqANsmyw-flgcfkpCS41E4dmdVOXSMMszJZcpN7KRlUqb3FppMsWEKLXRVqS2KRiGRFVKapMtNQxCpzZL82dkq7vs7HNCdQE_kpWxghluSq6NSYtGYvV-o7TJd8gr2IIa_xh97bPfizpsUx22aYe8-eN3ag3csnzxF9RekgeRdXbJ1tXq2u6R--bmqu1X-w7eH-_rZd8
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2017+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+2017&rft.atitle=Improved+Stance+Prediction+in+a+User+Similarity+Feature+Space&rft.au=Darwish%2C+Kareem&rft.au=Magdy%2C+Walid&rft.au=Zanouda%2C+Tahar&rft.series=ACM+Conferences&rft.date=2017-07-31&rft.pub=ACM&rft.isbn=1450349935&rft.spage=145&rft.epage=148&rft_id=info:doi/10.1145%2F3110025.3110112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450349932/sc.gif&client=summon&freeimage=true