A parameter-driven physics-informed neural network framework for solving two-parameter singular perturbation problems involving boundary layers
In this article, our goal is to solve two-parameter singular perturbation problems (SPPs) in one- and two-dimensions using an adapted Physics-Informed Neural Networks (PINNs) approach. Such problems are of major importance in engineering and the sciences, as they arise in control theory, fluid and g...
Gespeichert in:
| Veröffentlicht in: | Advances in Computational Science and Engineering Jg. 5; S. 72 - 102 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
01.09.2025
|
| Schlagworte: | |
| ISSN: | 2837-1739, 2837-1739 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!