UniCoS: A Unified Neural and Accelerator Co-Search Framework for CNNs and ViTs

Current algorithm-hardware co-search works often suffer from lengthy training times and inadequate exploration of hardware design spaces, leading to suboptimal performance. This work introduces UniCoS, a unified framework for co-optimizing neural networks and accelerators for CNNs and Vision Transfo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Fu, Wei, Lou, Wenqi, Tang, Cheng, Wen, Hongbing, Qin, Yunji, Gong, Lei, Wang, Chao, Zhou, Xuehai
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Current algorithm-hardware co-search works often suffer from lengthy training times and inadequate exploration of hardware design spaces, leading to suboptimal performance. This work introduces UniCoS, a unified framework for co-optimizing neural networks and accelerators for CNNs and Vision Transformers (ViTs). By introducing a novel training-free proxy that evaluates accuracy within seconds and a clustering-based algorithm for exploring heterogeneous dataflows, UniCoS efficiently navigates the design spaces of both architectures. Experimental results demonstrate that the solutions generated by UniCoS consistently surpass state-of-the-art (SOTA) methods (e.g., 3.54 \times energy-delay product (EDP) improvement with a 1.76 \% higher accuracy on ImageNet) while requiring notably reduced search time (up to 48 \times, \sim 3 hours). The code is available at https://github.com/mine7777/Unicos.git.
AbstractList Current algorithm-hardware co-search works often suffer from lengthy training times and inadequate exploration of hardware design spaces, leading to suboptimal performance. This work introduces UniCoS, a unified framework for co-optimizing neural networks and accelerators for CNNs and Vision Transformers (ViTs). By introducing a novel training-free proxy that evaluates accuracy within seconds and a clustering-based algorithm for exploring heterogeneous dataflows, UniCoS efficiently navigates the design spaces of both architectures. Experimental results demonstrate that the solutions generated by UniCoS consistently surpass state-of-the-art (SOTA) methods (e.g., 3.54 \times energy-delay product (EDP) improvement with a 1.76 \% higher accuracy on ImageNet) while requiring notably reduced search time (up to 48 \times, \sim 3 hours). The code is available at https://github.com/mine7777/Unicos.git.
Author Zhou, Xuehai
Tang, Cheng
Wen, Hongbing
Gong, Lei
Wang, Chao
Lou, Wenqi
Qin, Yunji
Fu, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Fu
  fullname: Fu, Wei
  organization: University of Science and Technology of China,China
– sequence: 2
  givenname: Wenqi
  surname: Lou
  fullname: Lou, Wenqi
  organization: Suzhou Institute of Advanced Research, University of Science and Technology of China,China
– sequence: 3
  givenname: Cheng
  surname: Tang
  fullname: Tang, Cheng
  organization: University of Science and Technology of China,China
– sequence: 4
  givenname: Hongbing
  surname: Wen
  fullname: Wen, Hongbing
  organization: University of Science and Technology of China,China
– sequence: 5
  givenname: Yunji
  surname: Qin
  fullname: Qin, Yunji
  organization: University of Science and Technology of China,China
– sequence: 6
  givenname: Lei
  surname: Gong
  fullname: Gong, Lei
  email: louwenqi@ustc.edu.cn
  organization: University of Science and Technology of China,China
– sequence: 7
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: cswang@ustc.edu.cn
  organization: University of Science and Technology of China,China
– sequence: 8
  givenname: Xuehai
  surname: Zhou
  fullname: Zhou, Xuehai
  organization: University of Science and Technology of China,China
BookMark eNo1T8tOwzAQNBIcoPQPEPIPpNhZJ7G5RYECUhUObblWi70rItIYOUWIvye8NId5aDTSnInjIQ4kxKVWC62Vu7qpmxKscYtc5cUUaQCj7ZGYu8pZAF0oUMaeinY7dE1cX8taToo7CrKl94S9xCHI2nvqKeEhJtnEbE2Y_ItcJtzTR0yvkr_zth1_yk_dZjwXJ4z9SPM_nont8nbT3Gerx7uHpl5lqCt3yIiqgtWE0hv1HCaUpS8YHJmCLQeDlc0nq5DAGWKvcuDSWQJm1AFhJi5-dzsi2r2lbo_pc_d_E74AvUxMAw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11133418
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 6
ExternalDocumentID 11133418
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Youth Innovation Promotion Association
  funderid: 10.13039/501100012492
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-ee75f0f0f6c40bdbdb66c5f39e45f8fd4a782f390ae394efc023f698e3ffa1da3
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-ee75f0f0f6c40bdbdb66c5f39e45f8fd4a782f390ae394efc023f698e3ffa1da3
PageCount 6
ParticipantIDs ieee_primary_11133418
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.29515
Snippet Current algorithm-hardware co-search works often suffer from lengthy training times and inadequate exploration of hardware design spaces, leading to suboptimal...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Computer architecture
Design automation
Hardware acceleration
hardware software co-exploration
heterogeneous multi-core architecture
Navigation
Neural networks
Software
Space exploration
Training
Transformers
zero-shot proxy
Title UniCoS: A Unified Neural and Accelerator Co-Search Framework for CNNs and ViTs
URI https://ieeexplore.ieee.org/document/11133418
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhNu5vNZjfeymrxIEvBKr2VPCZQkF2xrb_fSbZVPHiQXCZhIDB5fEMy3wwht1JCyrVyjHuVs8BZZsZZzZQRghfSg-6y6z8VdV3O52q6JatHLgwAxOAzGAYx_uW71m7CU9kolEXHW7fskV5RyI6stWX9poka3Y8r3E0i0E94Ptwp_yqbElFjcvjP-Y7I4Id_R6ffyHJM9qA5ITW6h1X7fEfHFCWPriMNmTX0G9WNo2NrEUDinzmtWtZFEdPJLvSK-jBe16uo_LqcrQbkZfIwqx7ZthoC03ho1gygyH2CTVqRGIdNSpv7TIHIfemd0Aj22E00ZEqAt4jGXqoSMu916nR2SvpN28AZoULbwuBCeJGB0NKoVBhu8uCrSZyjPCeDYIzFe5fwYrGzw8Uf45fkIJg8RFBxfkX6648NXJN9-7lerj5u4jJ9AZbulGY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl7T7iOb3Xgrq6ViXQpW6a1kkwkUZFf68Pc7ybaKBw-SSxJCApPHN2TmmyHkVggIIyUNi6xMmOMss9JoxWTJeZQKC6qJrj9MiyKbTORoTVb3XBgA8M5n0HFVb8s3tV65r7KuS4uOr262TXYSnCpo6Fpr3m8YyO59L8fzxB0BJUo6m-G_Eqd43Ogf_HPFQ9L-YeDR0Te2HJEtqI5JgQpiXr_c0R7FmkXlkbrYGuqdqsrQntYIId5qTvOaNX7EtL9xvqLW9RfFwg9-m40XbfLafxjnA7bOh8AUXpslA0gTG2ARmgelwSKETmwsgSc2s4YrhHtsBgpiycFqxGMrZAaxtSo0Kj4hraqu4JRQrnRa4lZYHgNXopQhL6MycdqawDWyM9J2wph-NCEvphs5nP_Rf0P2BuPn4XT4WDxdkH0nfudPFUWXpLWcr-CK7OrP5Wwxv_Zb9gWAP5et
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=UniCoS%3A+A+Unified+Neural+and+Accelerator+Co-Search+Framework+for+CNNs+and+ViTs&rft.au=Fu%2C+Wei&rft.au=Lou%2C+Wenqi&rft.au=Tang%2C+Cheng&rft.au=Wen%2C+Hongbing&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FDAC63849.2025.11133418&rft.externalDocID=11133418