POLARIS: Explainable Artificial Intelligence for Mitigating Power Side-Channel Leakage

Microelectronic systems are widely used in many sensitive applications (e.g., manufacturing, energy, defense). These systems increasingly handle sensitive data (e.g., encryption key) and are vulnerable to diverse threats, such as, power sidechannel attacks, which infer sensitive data through dynamic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Mahfuz, Tanzim, Paria, Sudipta, Suha, Tasneem, Bhunia, Swarup, Chakraborty, Prabuddha
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Microelectronic systems are widely used in many sensitive applications (e.g., manufacturing, energy, defense). These systems increasingly handle sensitive data (e.g., encryption key) and are vulnerable to diverse threats, such as, power sidechannel attacks, which infer sensitive data through dynamic power profile. In this paper, we present a novel framework, POLARIS for mitigating power side channel leakage using an Explainable Artificial Intelligence (XAI) guided masking approach. POLARIS uses an unsupervised process to automatically build a tailored training dataset and utilize it to train a masking model. The POLARIS framework outperforms state-of-the-art mitigation solutions (e.g., VALIANT) in terms of leakage reduction, execution time, and overhead across large designs.
DOI:10.1109/DAC63849.2025.11132622