Scalable Community Detection Using Quantum Hamiltonian Descent and QUBO Formulation
We present a quantum-inspired algorithm that utilizes Quantum Hamiltonian Descent (QHD) for efficient community detection. Our approach reformulates the community detection task as a Quadratic Unconstrained Binary Optimization (QUBO) problem, and QHD is deployed to identify optimal community structu...
Saved in:
| Published in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) pp. 1 - 7 |
|---|---|
| Main Authors: | , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
22.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We present a quantum-inspired algorithm that utilizes Quantum Hamiltonian Descent (QHD) for efficient community detection. Our approach reformulates the community detection task as a Quadratic Unconstrained Binary Optimization (QUBO) problem, and QHD is deployed to identify optimal community structures. We implement a multi-level algorithm that iteratively refines community assignments by alternating between QUBO problem setup and QHD-based optimization. Benchmarking shows our method achieves up to 5.49% better modularity scores while requiring less computational time compared to classical optimization approaches. This work demonstrates the potential of hybrid quantum-inspired solutions for advancing community detection in largescale graph data. |
|---|---|
| DOI: | 10.1109/DAC63849.2025.11133263 |