ATLAS: A Self-Supervised and Cross-Stage Netlist Power Model for Fine-Grained Time-Based Layout Power Analysis

Accurate power prediction in VLSI design is crucial for effective power optimization, especially as designs get transformed from gate-level netlist to layout stages. However, traditional accurate power simulation requires time-consuming back-end processing and simulation steps, which significantly i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Li, Wenkai, Lu, Yao, Fang, Wenji, Wang, Jing, Zhang, Qijun, Xie, Zhiyao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate power prediction in VLSI design is crucial for effective power optimization, especially as designs get transformed from gate-level netlist to layout stages. However, traditional accurate power simulation requires time-consuming back-end processing and simulation steps, which significantly impede design optimization. To address this, we propose ATLAS, which can predict the ultimate time-based layout power for any new design in the gate-level netlist. To the best of our knowledge, ATLAS is the first work that supports both time-based power simulation and general cross-design power modeling. It achieves such general timebased power modeling by proposing a new pre-training and fine-tuning paradigm customized for circuit power. Targeting golden per-cycle layout power from commercial tools, our ATLAS achieves the mean absolute percentage error (MAPE) of only {0. 5 8 \%, ~} {0. 4 5 \%}, and {5. 1 2 \%} for the clock tree, register, and combinational power groups, respectively, without any layout information. Overall, the MAPE for the total power of the entire design is \lt1 \%, and the inference speed of a workload is significantly faster than the standard flow of commercial tools.
AbstractList Accurate power prediction in VLSI design is crucial for effective power optimization, especially as designs get transformed from gate-level netlist to layout stages. However, traditional accurate power simulation requires time-consuming back-end processing and simulation steps, which significantly impede design optimization. To address this, we propose ATLAS, which can predict the ultimate time-based layout power for any new design in the gate-level netlist. To the best of our knowledge, ATLAS is the first work that supports both time-based power simulation and general cross-design power modeling. It achieves such general timebased power modeling by proposing a new pre-training and fine-tuning paradigm customized for circuit power. Targeting golden per-cycle layout power from commercial tools, our ATLAS achieves the mean absolute percentage error (MAPE) of only {0. 5 8 \%, ~} {0. 4 5 \%}, and {5. 1 2 \%} for the clock tree, register, and combinational power groups, respectively, without any layout information. Overall, the MAPE for the total power of the entire design is \lt1 \%, and the inference speed of a workload is significantly faster than the standard flow of commercial tools.
Author Fang, Wenji
Xie, Zhiyao
Wang, Jing
Li, Wenkai
Lu, Yao
Zhang, Qijun
Author_xml – sequence: 1
  givenname: Wenkai
  surname: Li
  fullname: Li, Wenkai
  email: wlidm@connect.ust.hk
  organization: Hong Kong University of Science and Technology
– sequence: 2
  givenname: Yao
  surname: Lu
  fullname: Lu, Yao
  email: yludf@connect.ust.hk
  organization: Hong Kong University of Science and Technology
– sequence: 3
  givenname: Wenji
  surname: Fang
  fullname: Fang, Wenji
  email: wfang838@connect.ust.hk
  organization: Hong Kong University of Science and Technology
– sequence: 4
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  email: jwangjw@connect.ust.hk
  organization: Hong Kong University of Science and Technology
– sequence: 5
  givenname: Qijun
  surname: Zhang
  fullname: Zhang, Qijun
  email: qzhangcs@connect.ust.hk
  organization: Hong Kong University of Science and Technology
– sequence: 6
  givenname: Zhiyao
  surname: Xie
  fullname: Xie, Zhiyao
  email: eezhiyao@ust.hk
  organization: Hong Kong University of Science and Technology
BookMark eNo1kF1LwzAYhSPohc79A5H8gcy8Tbok3tXqplA_oL0fafNGAl07kk7Zv3eiu3rgcJ5zca7I-TAOSMgt8AUAN3ePRbkUWppFxrP8GIHIVA5nZG6U0UJAzgWX-pIMRVMV9T0taI29Z_V-h_ErJHTUDo6WcUyJ1ZP9RPqGUx_SRD_Gb4z0dXTYUz9GugoDsnW0RzjahC2yB_vrV_Yw7k_1YrD9IYV0TS687RPO_zkjzeqpKZ9Z9b5-KYuKWVBmYg4k99oq0Yqcd8JLLb0yqMEpAOxAON5yWPJWik572Wpp9bLLlG2NzqQXM3LzNxsQcbOLYWvjYXN6QfwAtc1V5w
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11132751
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 7
ExternalDocumentID 11132751
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-d140f8a73b350c3f484f79e81d711ec13d0b0160b43c8f4b84a86c27ab9824f3
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-d140f8a73b350c3f484f79e81d711ec13d0b0160b43c8f4b84a86c27ab9824f3
PageCount 7
ParticipantIDs ieee_primary_11132751
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2951102
Snippet Accurate power prediction in VLSI design is crucial for effective power optimization, especially as designs get transformed from gate-level netlist to layout...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Estimation
Integrated circuit modeling
Layout
Logic gates
Optimization
Predictive models
Registers
Very large scale integration
Title ATLAS: A Self-Supervised and Cross-Stage Netlist Power Model for Fine-Grained Time-Based Layout Power Analysis
URI https://ieeexplore.ieee.org/document/11132751
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSseI3OXhNu7tJN1lva7V6KKXQHnor2WQiQtmWdrfgvzeTdhUPHjwEQkgIzCTMy8ebR8gDCOlBB74wFiplQmQxU6nSzFpnjXSiF4EKYhNyNFKzWTbek9UDFwYAwucz6GA1vOXbpanxqqwbZNElEqYPpUx3ZK096zeOsu5z3verSSD9JOl1ms6_ZFNC1Bic_HO-U9L-4d_R8XdkOSMHUJ6TMp8O88kjzekEFo5N6hVu8w1YqktL-xjtmIeO70BHUC289-gYFdAoqp0tqMemdOARJXtFTQg_CLkf7Enj-KH-XNZN9yZLSZtMBy_T_hvbqyUw7TdVxaw_KjmlJS94LzLcCSWczMDjURnHYGJu8c4zjQrBjXLeNUKr1CRSF5lKhOMXpFUuS7gktFCK2yTyhVshC6ljZaXNlEnAgEnlFWmjrearXT6MeWOm6z_ab8gxegQ_WCXJLWlV6xruyJHZVh-b9X3w4hdFC55Y
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6igp5UnPjbHLxma9O0Sb3V6ZxYy2A97DbS5EWE0Y2tFfzvTbpV8eDBQyCEhMB7Ce_Lj-99CN0C4xZ0uBfGQkSEsdgnIhKSaG204oaFHohGbIJnmZhM4tGGrN5wYQCg-XwGXVdt3vL1XNXuqqzXyKJzR5jeCRmj3pquteH9-l7ce0j6dj0xR0ChYbft_ks4pYkbg4N_zniIOj8MPDz6ji1HaAvKY1QmeZqM73CCxzAzZFwv3EZfgcay1Ljv4h2x4PENcAbVzPoPj5wGGnZ6ZzNs0SkeWExJnpwqhB3k2B_kXrrxqfyc1233Nk9JB-WDx7w_JBu9BCLttqqItoclIyQPiiD0VGCYYIbHYBEp931QfqDdrWfkFSxQwljnMCkiRbksYkGZCU7Qdjkv4RThQohAU8-WQDNecOkLzXUsFAUFKuJnqONsNV2sM2JMWzOd_9F-g_aG-Ws6TZ-zlwu077zjvltReom2q2UNV2hXfVTvq-V149EvsFWhnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=ATLAS%3A+A+Self-Supervised+and+Cross-Stage+Netlist+Power+Model+for+Fine-Grained+Time-Based+Layout+Power+Analysis&rft.au=Li%2C+Wenkai&rft.au=Lu%2C+Yao&rft.au=Fang%2C+Wenji&rft.au=Wang%2C+Jing&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132751&rft.externalDocID=11132751