Joint Cutting for Hybrid Schrödinger-Feynman Simulation of Quantum Circuits
Despite the continuous advancements in size and robustness of real quantum devices, reliable large-scale quantum computers are not yet available. Hence, classical simulation of quantum algorithms remains crucial for testing new methods and estimating quantum advantage. Pushing classical simulation m...
Uloženo v:
| Vydáno v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Despite the continuous advancements in size and robustness of real quantum devices, reliable large-scale quantum computers are not yet available. Hence, classical simulation of quantum algorithms remains crucial for testing new methods and estimating quantum advantage. Pushing classical simulation methods to their limit is essential, particularly due to their inherent exponential complexity. Besides the established Schrödinger-style full statevector simulation, so-called Hybrid Schrödinger-Feynman (HSF) approaches have shown promise to make simulations more efficient. HSF simulation employs the idea of "cutting" the circuit into smaller parts, reducing their execution times. This, however, comes at the cost of an exponential overhead in the number of cuts. Inspired by the domain of Quantum Circuit Cutting, we propose an HSF simulation method based on the idea of "joint cutting" to significantly reduce the aforementioned overhead. This means that, prior to the cutting procedure, gates are collected into "blocks" and all gates in a block are jointly cut instead of individually. We investigate how the proposed refinement can help decrease simulation times and highlight the remaining challenges. Experimental evaluations show that "joint cutting" can outperform the standard HSF simulation by up to a factor \approx 4000 \times and the Schrödinger-style simulation by a factor \approx 200 \times for suitable instances. The implementation is available at https://github.com/cda-tum/mqt-qsim-joint-cutting. |
|---|---|
| AbstractList | Despite the continuous advancements in size and robustness of real quantum devices, reliable large-scale quantum computers are not yet available. Hence, classical simulation of quantum algorithms remains crucial for testing new methods and estimating quantum advantage. Pushing classical simulation methods to their limit is essential, particularly due to their inherent exponential complexity. Besides the established Schrödinger-style full statevector simulation, so-called Hybrid Schrödinger-Feynman (HSF) approaches have shown promise to make simulations more efficient. HSF simulation employs the idea of "cutting" the circuit into smaller parts, reducing their execution times. This, however, comes at the cost of an exponential overhead in the number of cuts. Inspired by the domain of Quantum Circuit Cutting, we propose an HSF simulation method based on the idea of "joint cutting" to significantly reduce the aforementioned overhead. This means that, prior to the cutting procedure, gates are collected into "blocks" and all gates in a block are jointly cut instead of individually. We investigate how the proposed refinement can help decrease simulation times and highlight the remaining challenges. Experimental evaluations show that "joint cutting" can outperform the standard HSF simulation by up to a factor \approx 4000 \times and the Schrödinger-style simulation by a factor \approx 200 \times for suitable instances. The implementation is available at https://github.com/cda-tum/mqt-qsim-joint-cutting. |
| Author | Burgholzer, Lukas Ufrecht, Christian Wille, Robert Scherer, Daniel D. Herzog, Laura S. |
| Author_xml | – sequence: 1 givenname: Laura S. surname: Herzog fullname: Herzog, Laura S. organization: Technical University of Munich,Chair for Design Automation,Germany – sequence: 2 givenname: Lukas surname: Burgholzer fullname: Burgholzer, Lukas organization: Technical University of Munich,Chair for Design Automation,Germany – sequence: 3 givenname: Christian surname: Ufrecht fullname: Ufrecht, Christian organization: Fraunhofer Institute for Integrated Circuits IIS,Nuremberg,Germany – sequence: 4 givenname: Daniel D. surname: Scherer fullname: Scherer, Daniel D. organization: Fraunhofer Institute for Integrated Circuits IIS,Nuremberg,Germany – sequence: 5 givenname: Robert surname: Wille fullname: Wille, Robert organization: Technical University of Munich,Chair for Design Automation,Germany |
| BookMark | eNo1j01KAzEYQCPoQmtvIJILTP2SbzJNlmW0VhkQqa5LfjXQyUiaWczFvIAXs1BdPXiLB--KnKcheUJuGSwYA3V3v2oblLVacODiqBgil8szMldLJRGZAIRaXpLueYip0HYsJaYPGoZMN5PJ0dGt_cw_3-5ofa7Wfkq9TnQb-3GvSxwSHQJ9HXUqY0_bmO0Yy-GaXAS9P_j5H2fkff3w1m6q7uXxqV11lWZLVSqrnbVBOKOaGhvnWAjOQMMhOAbeKtDKaQBhpAEnkfsmcOUUxzoIIzTijNycutF7v_vKsdd52v1P4i8Mwk3j |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11133287 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11133287 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-cadccf5db96436dd1ffdb0620fd10ec90a9da005b8b0d832e6f29d9234f5b5a33 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-cadccf5db96436dd1ffdb0620fd10ec90a9da005b8b0d832e6f29d9234f5b5a33 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11133287 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.2952647 |
| Snippet | Despite the continuous advancements in size and robustness of real quantum devices, reliable large-scale quantum computers are not yet available. Hence,... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | circuit cutting classical simulation Design automation hybrid Schrödinger-Feynman joint cutting Logic gates Quantum advantage Quantum algorithm Quantum circuit quantum computing Qubit Robustness Shape Testing |
| Title | Joint Cutting for Hybrid Schrödinger-Feynman Simulation of Quantum Circuits |
| URI | https://ieeexplore.ieee.org/document/11133287 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22ePCkYsVvcvCaNrtpspujrJYiUipV6K3kE_fQXdnuFvrH_AP-MZN0q3jw4C2EQOBlhhkm8-YBcBs7Q5A2ZSiSliJvJIjLlCBrJDZKuxxfyCA2kUwm6XzOpy1ZPXBhjDGh-cz0_TL85etSNb5UNvCy6MSl-B3QSRK2JWu1rN8I88H9XeasaejpJzHt7w7_kk0JUWN0-M_7jkDvh38Hp9-R5RjsmeIEPD2WeVHDrAmdytAlm3C88XwrOFNv1eeH3hboRmZTLEUBZ_myVeaCpYXPjUOwWcIsr1ST16seeB09vGRj1GohIOFcpkZKaKUs1dLPz2JaR9ZqiVmMrY4cqBwLroXzKJlKrJ2XGmZjrl32NrRUUkHIKegWZWHOAEwSYS0bSpZIL8eHJSUJp0RoxrWMFDkHPQ_F4n077mKxQ-Hij_1LcOAB9_1TcXwFunXVmGuwr9Z1vqpuwiN9ATSSlmQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl7TZh_Jbo6yWqrWUmmF3kqeuIfuynZX6B_zD_jHTLZbxYMHbyEEAl9mmGEy33wAXPvWEISJKfKEIcgZCWIiDpDRAmupbI7PRS02EQ2H8XTKRg1ZvebCaK3r5jPdccv6L1_lsnKlsq6TRQ9sir8JtkgY-nhF12p4vx5m3dubxNpT6AgoPumsj_8STqnjRm_vnzfug_YPAw-OvmPLAdjQ2SEYPORpVsKkqnuVoU03YX_pGFdwLF-Lzw-1KtH19DKb8wyO03mjzQVzA58ri2E1h0layCotF23w0rubJH3UqCEgbp2mRJIrKQ1Rwk3Qokp5xiiBqY-N8iysDHOmuPUpEQusrJ9qanymbP4WGiIID4Ij0MryTB8DGEXcGBoKGgknyIcFCSJGAq4oU8KTwQloOyhmb6uBF7M1Cqd_7F-Bnf7kaTAb3A8fz8CuA991U_n-OWiVRaUvwLZ8L9NFcVk_2Bc1R5mr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Joint+Cutting+for+Hybrid+Schr%C3%B6dinger-Feynman+Simulation+of+Quantum+Circuits&rft.au=Herzog%2C+Laura+S.&rft.au=Burgholzer%2C+Lukas&rft.au=Ufrecht%2C+Christian&rft.au=Scherer%2C+Daniel+D.&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11133287&rft.externalDocID=11133287 |