Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders

Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum computing has recently emerged as a powerful tool for tackling several machine learning tasks, but training quantum machine learning models remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7
Hauptverfasser: Ludmir, Jason Zev, Rebello, Sophia, Ruiz, Jacob, Patel, Tirthak
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Detecting mission-critical anomalous events and data is a crucial challenge across various industries, including finance, healthcare, and energy. Quantum computing has recently emerged as a powerful tool for tackling several machine learning tasks, but training quantum machine learning models remains challenging, particularly due to the difficulty of gradient calculation. The challenge is even greater for anomaly detection, where unsupervised learning methods are essential to ensure practical applicability. To address these issues, we propose Quorum, the first quantum anomaly detection framework designed for unsupervised learning that operates without requiring any training.
DOI:10.1109/DAC63849.2025.11132860