BirdMoE: Reducing Communication Costs for Mixture-of-Experts Training Using Load-Aware Bi-random Quantization

Mixture-of-Experts (MoE) model parallelism is prevalent in training Large Language Models (e.g., ChatGPT). However, the intensive all-to-all collective communication of the MoE layer's intermediate computing results substantially degrades MoE training efficiency. In this paper, we propose BirdM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7
Hauptverfasser: Wu, Donglei, Yang, Weihao, Zou, Xiangyu, Jia, Jinda, Tao, Dingwen, Xia, Wen, Tian, Zhihong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!