BirdMoE: Reducing Communication Costs for Mixture-of-Experts Training Using Load-Aware Bi-random Quantization
Mixture-of-Experts (MoE) model parallelism is prevalent in training Large Language Models (e.g., ChatGPT). However, the intensive all-to-all collective communication of the MoE layer's intermediate computing results substantially degrades MoE training efficiency. In this paper, we propose BirdM...
Uloženo v:
| Vydáno v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
22.06.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!