BirdMoE: Reducing Communication Costs for Mixture-of-Experts Training Using Load-Aware Bi-random Quantization

Mixture-of-Experts (MoE) model parallelism is prevalent in training Large Language Models (e.g., ChatGPT). However, the intensive all-to-all collective communication of the MoE layer's intermediate computing results substantially degrades MoE training efficiency. In this paper, we propose BirdM...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autori: Wu, Donglei, Yang, Weihao, Zou, Xiangyu, Jia, Jinda, Tao, Dingwen, Xia, Wen, Tian, Zhihong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 22.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Buďte prvý, kto okomentuje tento záznam!
Najprv sa musíte prihlásiť.