Hardware-Software Co-design for Distributed Quantum Computing

Distributed quantum computing (DQC) offers a pathway for scaling up quantum computing architectures beyond the confines of a single chip. Entanglement is a crucial resource for implementing nonlocal operations in DQC, and it is required to allow teleportation of quantum states and gates. Remote enta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 6
Hlavní autoři: Liu, Ji, Zang, Allen, Suchara, Martin, Zhong, Tian, Hovland, Paul D
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Distributed quantum computing (DQC) offers a pathway for scaling up quantum computing architectures beyond the confines of a single chip. Entanglement is a crucial resource for implementing nonlocal operations in DQC, and it is required to allow teleportation of quantum states and gates. Remote entanglement generation in practical systems is probabilistic, has longer duration than that of local operations, and is nondeterministic. Therefore, optimizing the performance of probabilistic remote entanglement generation is critically important for the performance of DQC architectures. In this paper we propose and study a new DQC architecture that combines (1) buffering of successfully generated entanglement, (2) asynchronously attempted entanglement generation, and (3) adaptive scheduling of remote gates based on the entanglement generation pattern. We show that our hardware-software co-design improves both the runtime and the output fidelity under a realistic model of DQC.
DOI:10.1109/DAC63849.2025.11132538