Towards Training Robustness Against Dynamic Errors in Quantum Machine Learning
Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work high...
Saved in:
| Published in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) pp. 1 - 7 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
22.06.2025
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!