Towards Training Robustness Against Dynamic Errors in Quantum Machine Learning

Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7
Hauptverfasser: Duan, Shijin, Liu, Gaowen, Fleming, Charles, Kompella, Ramana, Xu, Xiaolin, Ren, Shaolei
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 22.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work highlights how error rates fluctuate over time and across different qubits, affecting QNN performance even when overall error rates are similar. We introduce a novel NAT strategy that dynamically adjusts to standard and fatal error conditions, incorporating a low-complexity search method to identify fatal errors during optimization. This strategy significantly improves robustness, maintaining competitive performance with leading NAT methods across varying error scenarios.
AbstractList Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work highlights how error rates fluctuate over time and across different qubits, affecting QNN performance even when overall error rates are similar. We introduce a novel NAT strategy that dynamically adjusts to standard and fatal error conditions, incorporating a low-complexity search method to identify fatal errors during optimization. This strategy significantly improves robustness, maintaining competitive performance with leading NAT methods across varying error scenarios.
Author Xu, Xiaolin
Kompella, Ramana
Duan, Shijin
Fleming, Charles
Liu, Gaowen
Ren, Shaolei
Author_xml – sequence: 1
  givenname: Shijin
  surname: Duan
  fullname: Duan, Shijin
  email: duan.s@northeastern.edu
  organization: Northeastern University
– sequence: 2
  givenname: Gaowen
  surname: Liu
  fullname: Liu, Gaowen
  email: gaoliu@cisco.com
  organization: Cisco Research
– sequence: 3
  givenname: Charles
  surname: Fleming
  fullname: Fleming, Charles
  email: chflemin@cisco.com
  organization: Cisco Research
– sequence: 4
  givenname: Ramana
  surname: Kompella
  fullname: Kompella, Ramana
  email: rkompell@cisco.com
  organization: Cisco Research
– sequence: 5
  givenname: Xiaolin
  surname: Xu
  fullname: Xu, Xiaolin
  email: x.xu@northeastern.edu
  organization: Northeastern University
– sequence: 6
  givenname: Shaolei
  surname: Ren
  fullname: Ren, Shaolei
  email: shaolei@ucr.edu
  organization: University of California,Riverside
BookMark eNo1j11LwzAYRiPohc79A5H8gc58tE1yObr5AVVR6vV4k76ZAZtK0iL7907UqwMHzgPPBTmNY0RCrjlbcc7MzWbd1FKXZiWYqI6KSymUOCFLo4yWkldMslKfk6du_ILUZ9olCDHEPX0d7ZyniDnT9f7o8kQ3hwhDcHSb0pgyDZG-zBCneaCP4N5DRNoipJ_6kpx5-Mi4_OOCvN1uu-a-aJ_vHpp1WwBXZiqs8h61ts4i11Xta1NZJ4xAhq4UogaoeuBW6ppxyxX3Vri-B2-0kiX0Ri7I1e9uQMTdZwoDpMPu_6b8BijQTbE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11133272
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 7
ExternalDocumentID 11133272
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-b7ffe88bcbe1856f695bc292e0ec4226aa5da1b38601b171fb2cddaf98734ad93
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-b7ffe88bcbe1856f695bc292e0ec4226aa5da1b38601b171fb2cddaf98734ad93
PageCount 7
ParticipantIDs ieee_primary_11133272
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2951279
Snippet Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Error analysis
Machine learning
Noise
Optimization
Prevention and mitigation
Qubit
Robustness
Search methods
Training
Title Towards Training Robustness Against Dynamic Errors in Quantum Machine Learning
URI https://ieeexplore.ieee.org/document/11133272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCe6ePCkxhq_w8Frt5bSAcdlH_GgzTQz2W0B-lh2sDX98O8XaKfx4MEbeSGQPHgfwPvxQ-iBCsJjNtahlCwKrSWSUIKwiVySGm4o00Z7oPATyzK-XotlD1b3WBgA8MVnMHRN_5afl7p1V2UjR4ueEGY97iFjrANr9ajfOBKj2WRqdxN18BOSDvedf9Gm-KixOPnnfKco-MHf4eV3ZDlDB1Cco2zlK1xrvOpZHfBrqdq6cb4KT7ZWVjd41hHM43lVlVWNdwV-aa3u2nf87KsmAfcfqm4D9LaYr6aPYc-GEEprNE2omDHAudIKbIwdm7FIlSaCQATawWGlTHMZq4TbI5aKWWwU0XkujeAsoTIXyQUaFGUBlwhTp6BIC8GMplQqLqjS2uY6lFNiuLhCgVPG5qP78GKz18P1H_IbdOxGdBVUhNyiQVO1cIeO9Gezq6t7v0xf6ImVhA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCdmmuhJjTO-5eC1W0tpgeOyR2bcmmlqstsCFJYdbJc-_PsF1mk8ePBGvhBIPvgewPfjB8ATZogGJJYe58T3jCUijytmErkw0lRjIrV0QOEZSRK6XLJFC1Z3WBillCs-Uz3bdG_5WSEbe1XWt7ToISLG4x5GGKNgB9dqcb-Bz_qjwdDsJ2wBKCjq7bv_Ik5xcWNy-s8Zz0D3B4EHF9-x5RwcqPwCJKmrca1g2vI6wLdCNFVtvRUcrI2squFoRzEPx2VZlBXc5PC1MdprPuDc1U0q2H6puu6C98k4HU69lg_B48Zsak8QrRWlQgplomysYxYJiRhSvpIWEMt5lPFAhNQcskRAAi2QzDKuGSUh5hkLL0EnL3J1BSC2CvIlY0RLjLmgDAspTbaDKUaasmvQtcpYbXdfXqz2erj5Q_4IjqfpfLaaPScvt-DEjm7rqRC6A526bNQ9OJKf9aYqH9ySfQHe5JjL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Towards+Training+Robustness+Against+Dynamic+Errors+in+Quantum+Machine+Learning&rft.au=Duan%2C+Shijin&rft.au=Liu%2C+Gaowen&rft.au=Fleming%2C+Charles&rft.au=Kompella%2C+Ramana&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11133272&rft.externalDocID=11133272