Towards Training Robustness Against Dynamic Errors in Quantum Machine Learning
Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work high...
Gespeichert in:
| Veröffentlicht in: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) S. 1 - 7 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
22.06.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work highlights how error rates fluctuate over time and across different qubits, affecting QNN performance even when overall error rates are similar. We introduce a novel NAT strategy that dynamically adjusts to standard and fatal error conditions, incorporating a low-complexity search method to identify fatal errors during optimization. This strategy significantly improves robustness, maintaining competitive performance with leading NAT methods across varying error scenarios. |
|---|---|
| AbstractList | Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training (NAT) methods often assume static error rates in quantum neural networks (QNNs), overlooking the dynamic nature of quantum noise. Our work highlights how error rates fluctuate over time and across different qubits, affecting QNN performance even when overall error rates are similar. We introduce a novel NAT strategy that dynamically adjusts to standard and fatal error conditions, incorporating a low-complexity search method to identify fatal errors during optimization. This strategy significantly improves robustness, maintaining competitive performance with leading NAT methods across varying error scenarios. |
| Author | Xu, Xiaolin Kompella, Ramana Duan, Shijin Fleming, Charles Liu, Gaowen Ren, Shaolei |
| Author_xml | – sequence: 1 givenname: Shijin surname: Duan fullname: Duan, Shijin email: duan.s@northeastern.edu organization: Northeastern University – sequence: 2 givenname: Gaowen surname: Liu fullname: Liu, Gaowen email: gaoliu@cisco.com organization: Cisco Research – sequence: 3 givenname: Charles surname: Fleming fullname: Fleming, Charles email: chflemin@cisco.com organization: Cisco Research – sequence: 4 givenname: Ramana surname: Kompella fullname: Kompella, Ramana email: rkompell@cisco.com organization: Cisco Research – sequence: 5 givenname: Xiaolin surname: Xu fullname: Xu, Xiaolin email: x.xu@northeastern.edu organization: Northeastern University – sequence: 6 givenname: Shaolei surname: Ren fullname: Ren, Shaolei email: shaolei@ucr.edu organization: University of California,Riverside |
| BookMark | eNo1j11LwzAYRiPohc79A5H8gc58tE1yObr5AVVR6vV4k76ZAZtK0iL7907UqwMHzgPPBTmNY0RCrjlbcc7MzWbd1FKXZiWYqI6KSymUOCFLo4yWkldMslKfk6du_ILUZ9olCDHEPX0d7ZyniDnT9f7o8kQ3hwhDcHSb0pgyDZG-zBCneaCP4N5DRNoipJ_6kpx5-Mi4_OOCvN1uu-a-aJ_vHpp1WwBXZiqs8h61ts4i11Xta1NZJ4xAhq4UogaoeuBW6ppxyxX3Vri-B2-0kiX0Ri7I1e9uQMTdZwoDpMPu_6b8BijQTbE |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11133272 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11133272 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-b7ffe88bcbe1856f695bc292e0ec4226aa5da1b38601b171fb2cddaf98734ad93 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-b7ffe88bcbe1856f695bc292e0ec4226aa5da1b38601b171fb2cddaf98734ad93 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11133272 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.2951279 |
| Snippet | Quantum machine learning, crucial in the noisy intermediate-scale quantum (NISQ) era, confronts challenges in error mitigation. Current noise-aware training... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Error analysis Machine learning Noise Optimization Prevention and mitigation Qubit Robustness Search methods Training |
| Title | Towards Training Robustness Against Dynamic Errors in Quantum Machine Learning |
| URI | https://ieeexplore.ieee.org/document/11133272 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8MgFCe6ePCkxhq_w8Frt5bSAcdlH_GgzTQz2W0B-lh2sDX98O8XaKfx4MEbeSGQPHgfwPvxQ-iBCsJjNtahlCwKrSWSUIKwiVySGm4o00Z7oPATyzK-XotlD1b3WBgA8MVnMHRN_5afl7p1V2UjR4ueEGY97iFjrANr9ajfOBKj2WRqdxN18BOSDvedf9Gm-KixOPnnfKco-MHf4eV3ZDlDB1Cco2zlK1xrvOpZHfBrqdq6cb4KT7ZWVjd41hHM43lVlVWNdwV-aa3u2nf87KsmAfcfqm4D9LaYr6aPYc-GEEprNE2omDHAudIKbIwdm7FIlSaCQATawWGlTHMZq4TbI5aKWWwU0XkujeAsoTIXyQUaFGUBlwhTp6BIC8GMplQqLqjS2uY6lFNiuLhCgVPG5qP78GKz18P1H_IbdOxGdBVUhNyiQVO1cIeO9Gezq6t7v0xf6ImVhA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCdmmuhJjTO-5eC1W0tpgeOyR2bcmmlqstsCFJYdbJc-_PsF1mk8ePBGvhBIPvgewPfjB8ATZogGJJYe58T3jCUijytmErkw0lRjIrV0QOEZSRK6XLJFC1Z3WBillCs-Uz3bdG_5WSEbe1XWt7ToISLG4x5GGKNgB9dqcb-Bz_qjwdDsJ2wBKCjq7bv_Ik5xcWNy-s8Zz0D3B4EHF9-x5RwcqPwCJKmrca1g2vI6wLdCNFVtvRUcrI2squFoRzEPx2VZlBXc5PC1MdprPuDc1U0q2H6puu6C98k4HU69lg_B48Zsak8QrRWlQgplomysYxYJiRhSvpIWEMt5lPFAhNQcskRAAi2QzDKuGSUh5hkLL0EnL3J1BSC2CvIlY0RLjLmgDAspTbaDKUaasmvQtcpYbXdfXqz2erj5Q_4IjqfpfLaaPScvt-DEjm7rqRC6A526bNQ9OJKf9aYqH9ySfQHe5JjL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Towards+Training+Robustness+Against+Dynamic+Errors+in+Quantum+Machine+Learning&rft.au=Duan%2C+Shijin&rft.au=Liu%2C+Gaowen&rft.au=Fleming%2C+Charles&rft.au=Kompella%2C+Ramana&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11133272&rft.externalDocID=11133272 |