Holistic Design towards Resource-Stringent Binary Vector Symbolic Architecture
Classification tasks on ultra-lightweight devices demand devices that are resource-constrained and deliver swift responses. Binary Vector Symbolic Architecture (VSA) is a promising approach due to its minimal memory requirements and fast execution times compared to traditional machine learning (ML)...
Uložené v:
| Vydané v: | 2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
22.06.2025
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Classification tasks on ultra-lightweight devices demand devices that are resource-constrained and deliver swift responses. Binary Vector Symbolic Architecture (VSA) is a promising approach due to its minimal memory requirements and fast execution times compared to traditional machine learning (ML) methods. Nonetheless, binary VSA's practicality is limited by its inferior inference performance and a design that prioritizes algorithmic over hardware optimization. This paper introduces UniVSA, a co-optimized binary VSA framework for both algorithm and hardware. UniVSA not only significantly enhances inference accuracy beyond current state-of-the-art binary VSA models but also reduces memory footprints. It incorporates novel, lightweight modules and design flow tailored for optimal hardware performance. Experimental results show that UniVSA surpasses traditional ML methods in terms of performance on resource-limited devices, achieving smaller memory usage, lower latency, reduced resource demand, and decreased power consumption. |
|---|---|
| AbstractList | Classification tasks on ultra-lightweight devices demand devices that are resource-constrained and deliver swift responses. Binary Vector Symbolic Architecture (VSA) is a promising approach due to its minimal memory requirements and fast execution times compared to traditional machine learning (ML) methods. Nonetheless, binary VSA's practicality is limited by its inferior inference performance and a design that prioritizes algorithmic over hardware optimization. This paper introduces UniVSA, a co-optimized binary VSA framework for both algorithm and hardware. UniVSA not only significantly enhances inference accuracy beyond current state-of-the-art binary VSA models but also reduces memory footprints. It incorporates novel, lightweight modules and design flow tailored for optimal hardware performance. Experimental results show that UniVSA surpasses traditional ML methods in terms of performance on resource-limited devices, achieving smaller memory usage, lower latency, reduced resource demand, and decreased power consumption. |
| Author | Luo, Yukui Xu, Xiaolin Duan, Shijin Narkthong, Nuntipat Ren, Shaolei |
| Author_xml | – sequence: 1 givenname: Shijin surname: Duan fullname: Duan, Shijin email: duan.s@northeastern.edu organization: Northeastern University – sequence: 2 givenname: Nuntipat surname: Narkthong fullname: Narkthong, Nuntipat email: narkthong.n@northeastern.edu organization: Northeastern University – sequence: 3 givenname: Yukui surname: Luo fullname: Luo, Yukui email: yluo11@binghamton.edu organization: Binghamton University – sequence: 4 givenname: Shaolei surname: Ren fullname: Ren, Shaolei email: shaolei@ucr.edu organization: University of California,Riverside – sequence: 5 givenname: Xiaolin surname: Xu fullname: Xu, Xiaolin email: x.xu@northeastern.edu organization: Northeastern University |
| BookMark | eNo1j9FKwzAYhSPohW57A5G8QGeSP2mSy9rpJowJTr0dafp3BrZU0gzZ21tQrw58cD7OuSGXsY9IyB1nc86ZvV9UdQlG2rlgQo2Ig5CluSAzq60B4IoBk-aabFb9IQw5eLrAIewjzf23S-1AX3HoT8ljsc0pxD3GTB9CdOlMP9DnPtHt-diMXU-r5D9DHuEp4ZRcde4w4OwvJ-T96fGtXhXrl-VzXa0Lx7XNRSNKA7ZkJTBnHYJjvDO-09x5Dq300mulJDYNE22jWuOFFhJa1Slk2jMHE3L76w2IuPtK4Tgu2_3fhB8wGE1n |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/DAC63849.2025.11132468 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331503048 |
| EndPage | 7 |
| ExternalDocumentID | 11132468 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH CBEJK RIE RIO |
| ID | FETCH-LOGICAL-a179t-b2683960630a9ae3a01f8cf71ac13d4c4c7554ebb02db5d8c27243d5f5e07c0a3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:15 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a179t-b2683960630a9ae3a01f8cf71ac13d4c4c7554ebb02db5d8c27243d5f5e07c0a3 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_11132468 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-22 |
| PublicationDateYYYYMMDD | 2025-06-22 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 62nd ACM/IEEE Design Automation Conference (DAC) |
| PublicationTitleAbbrev | DAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 2.2959232 |
| Snippet | Classification tasks on ultra-lightweight devices demand devices that are resource-constrained and deliver swift responses. Binary Vector Symbolic Architecture... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Hardware acceleration Inference algorithms Machine learning Machine learning algorithms Memory management Optimization Performance evaluation Power demand Vectors |
| Title | Holistic Design towards Resource-Stringent Binary Vector Symbolic Architecture |
| URI | https://ieeexplore.ieee.org/document/11132468 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1s8eBJxYrf5OB1291sdpM91tbSgyyFaumtbCazIGgr7Vbw35tkt34cPHgLIRCYZJiXybw3ALdOQEWhdUAjitQ-UBQF2mgTxJQgWsSgS98lYvYg81zN59mkIat7LgwR-eIz6rqh_8s3K9y6VFnPt0UXqWpBS0pZk7Ua1m8UZr1hf2Bvk3D0E550d4t_tU3xUWN0-M_9jqDzzb9jk6_Icgx7tDyBfLx68arKbOirLljlK143bJeBD6bVuqZKsTvPsmUzn5Jn049X7eR_Wf_Hr0EHnkb3j4Nx0HRDCArrNFWgeWrBTOo0spyidlyEUamwlFGBUWwECpQWGpDWITc6MQq55CI2SZlQKDEs4lNoL1dLOgMmYmVIC0StjRBZakGecjLrVGYWT1ByDh1njMVbLXix2Nnh4o_5SzhwJncVVJxfQbtab-ka9vG9et6sb_wxfQLF1JYM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20CnpSseK3OXjddjeb7GaPtbWsWJdCa-mtbJJZEGor7Vbw35ukWz8OHryFEAhMMszLZN4bgFsroCKUcUDN8sg8UAR6UkvthciVMohBFq5LxKgXZ5kYj5N-RVZ3XBhEdMVn2LBD95ev52plU2VN1xadRWIbdjhjNFjTtSreb-AnzU6rbe4TswQUyhub5b8ap7i40T34546HUP9m4JH-V2w5gi2cHUOWzqdOV5l0XN0FKV3N65JscvDeoFysyVLkzvFsycgl5cng41VaAWDS-vFvUIfn7v2wnXpVPwQvN25TepJGBs5EViXLamqHuR8UQhVxkKsg1EwxFRtwgFL6VEuuhaIxZaHmBUc_Vn4enkBtNp_hKRAWCo2SKSWlZiyJDMwTVmgdi8QgCuRnULfGmLytJS8mGzuc_zF_A3vp8Kk36T1kjxewb81v66kovYRauVjhFeyq9_Jlubh2R_YJw0uZUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=Holistic+Design+towards+Resource-Stringent+Binary+Vector+Symbolic+Architecture&rft.au=Duan%2C+Shijin&rft.au=Narkthong%2C+Nuntipat&rft.au=Luo%2C+Yukui&rft.au=Ren%2C+Shaolei&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132468&rft.externalDocID=11132468 |