NDFT: Accelerating Density Functional Theory Calculations via Hardware/Software Co-Design on Near-Data Computing System

Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems. Previous works have attempted to accelerate LR-TDDFT using heterogeneous systems such as GPUs, FPGAs, and the Sunway architecture. H...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autori: Jiang, Qingcai, Tu, Buxin, Hao, Xiaoyu, Chen, Junshi, An, Hong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 22.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Linear-response time-dependent Density Functional Theory (LR-TDDFT) is a widely used method for accurately predicting the excited-state properties of physical systems. Previous works have attempted to accelerate LR-TDDFT using heterogeneous systems such as GPUs, FPGAs, and the Sunway architecture. However, a major drawback of these approaches is the constant data movement between host memory and the memory of the heterogeneous systems, which results in substantial data movement overhead. Moreover, these works focus primarily on optimizing the compute-intensive portions of LR-TDDFT, despite the fact that the calculation steps are fundamentally memory-bound.To address these challenges, we propose NDFT, a Near-Data Density Functional Theory framework. Specifically, we design a novel task partitioning and scheduling mechanism to offload each part of LR-TDDFT to the most suitable computing units within a CPU-NDP system. Additionally, we implement a hardware/software co-optimization of a critical kernel in LR-TDDFT to further enhance performance on the CPU-NDP system. Our results show that NDFT achieves performance improvements of 5.2x and 2.5x over CPU and GPU baselines, respectively, on a large physical system.
DOI:10.1109/DAC63849.2025.11133299