EnQode: Fast Amplitude Embedding for Quantum Machine Learning Using Classical Data

Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits. However, conventional AE methods suffer from deep, variable-length circuits that introduce high output error due to extensive gate usage and variable error rates across samples,...

Full description

Saved in:
Bibliographic Details
Published in:2025 62nd ACM/IEEE Design Automation Conference (DAC) pp. 1 - 7
Main Authors: Han, Jason, DiBrita, Nicholas S., Cho, Younghyun, Luo, Hengrui, Patel, Tirthak
Format: Conference Proceeding
Language:English
Published: IEEE 22.06.2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits. However, conventional AE methods suffer from deep, variable-length circuits that introduce high output error due to extensive gate usage and variable error rates across samples, resulting in noise-driven inconsistencies that degrade model accuracy. We introduce EnQode, a fast AE technique based on symbolic representation that addresses these limitations by clustering dataset samples and solving for cluster mean states through a low-depth, machine-specific ansatz. Optimized to reduce physical gates and SWAP operations, EnQode ensures all samples face consistent, low noise levels by standardizing circuit depth and composition. With over 94% fidelity in data mapping, EnQode enables robust, high-performance QML on noisy intermediate-scale quantum (NISQ) devices. Our opensource solution provides a scalable and efficient alternative for integrating classical data with quantum models.
AbstractList Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits. However, conventional AE methods suffer from deep, variable-length circuits that introduce high output error due to extensive gate usage and variable error rates across samples, resulting in noise-driven inconsistencies that degrade model accuracy. We introduce EnQode, a fast AE technique based on symbolic representation that addresses these limitations by clustering dataset samples and solving for cluster mean states through a low-depth, machine-specific ansatz. Optimized to reduce physical gates and SWAP operations, EnQode ensures all samples face consistent, low noise levels by standardizing circuit depth and composition. With over 94% fidelity in data mapping, EnQode enables robust, high-performance QML on noisy intermediate-scale quantum (NISQ) devices. Our opensource solution provides a scalable and efficient alternative for integrating classical data with quantum models.
Author DiBrita, Nicholas S.
Luo, Hengrui
Patel, Tirthak
Cho, Younghyun
Han, Jason
Author_xml – sequence: 1
  givenname: Jason
  surname: Han
  fullname: Han, Jason
  organization: Rice University
– sequence: 2
  givenname: Nicholas S.
  surname: DiBrita
  fullname: DiBrita, Nicholas S.
  organization: Rice University
– sequence: 3
  givenname: Younghyun
  surname: Cho
  fullname: Cho, Younghyun
  organization: Santa Clara University
– sequence: 4
  givenname: Hengrui
  surname: Luo
  fullname: Luo, Hengrui
  organization: Rice University
– sequence: 5
  givenname: Tirthak
  surname: Patel
  fullname: Patel, Tirthak
  organization: Rice University
BookMark eNo1T8tKw0AUHUEXWvsHIvMDqfPIY667kKYqRKRi1-Umc0cHkknJY-Hfm6JuzoFz4Dxu2GXoAzF2L8VGSgEP27xItYlho4RKFklqBUpesDVkYLSWidAiNtfsvQz73tIj3-E48bw7tX6aLfGyq8laHz656we-nzFMc8dfsfnygXhFOISzeRjPWLQ4jr7Blm9xwlt25bAdaf3HK3bYlR_Fc1S9Pb0UeRWhzGCKsLaySZ3TUicIQMJYgGWbXYpBNDHprDaoUqkzkSjjKKMGYxcLA4kRtdArdveb64noeBp8h8P38f-q_gGZL008
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/DAC63849.2025.11132921
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331503048
EndPage 7
ExternalDocumentID 11132921
Genre orig-research
GrantInformation_xml – fundername: Rice University
  funderid: 10.13039/100007863
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-a179t-abd1c6ff3135a99e08d99983dbed90c4e37b8a261370528fe7eca4f4089580b03
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a179t-abd1c6ff3135a99e08d99983dbed90c4e37b8a261370528fe7eca4f4089580b03
PageCount 7
ParticipantIDs ieee_primary_11132921
PublicationCentury 2000
PublicationDate 2025-June-22
PublicationDateYYYYMMDD 2025-06-22
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-22
  day: 22
PublicationDecade 2020
PublicationTitle 2025 62nd ACM/IEEE Design Automation Conference (DAC)
PublicationTitleAbbrev DAC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2951262
Snippet Amplitude embedding (AE) is essential in quantum machine learning (QML) for encoding classical data onto quantum circuits. However, conventional AE methods...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Encoding
Error analysis
Integrated circuit modeling
Integrated circuit reliability
Logic gates
Machine learning
Noise
Noise level
Noise measurement
Quantum circuit
Title EnQode: Fast Amplitude Embedding for Quantum Machine Learning Using Classical Data
URI https://ieeexplore.ieee.org/document/11132921
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07TwMxDI6gYmACRBFvZWBNm8ujybFVfYgBqhYB6lbl4UMMXFF7x-8nSa8gBga2KLIUyXbkOP4-G6Gb4DMuJA6GxKISEd55oo3jhPWYyxxnElKz6pd7NZno-TyfNmT1xIUBgAQ-g05cplq-X7o6fpV1N2PRI218Vym1IWs1rN-M5t1hfxC8SUT6CZOdrfCvsSkpaowP_nneIWr_8O_w9DuyHKEdKI_R46icLT3c4rFZV7gfkeCxLyUevVvwUQ6H9yee1UFV9Tt-SCBJwE3_1FecsAE4zcCMdsFDU5k2eh6PngZ3pJmIQEy4OBUx1meuVxQ849LkOVDtwwNPcx8OyqkTwJXVJiRFXFHJdAEKnBGFoDqXmlrKT1CrXJZwinCWWeuFDwkL9EThpbUFSG6t4C5EfK7PUDsqZPGxaXqx2Ori_I_9C7Qf1R5RVIxdola1quEK7bnP6m29uk6m-gK8OJWd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6igp5UrPg2B6_bZvPoZr2VPqjYllaq9FbymBUP3Uq76-83SbeKBw_eQggMzCTMTOb7ZhC6d3fGuMRBRb6oFHFrbCSVYRFtUhMbRgWEZtWvg2Q0krNZOq7I6oELAwABfAZ1vwy1fLs0pf8qa2zGonva-J7gnMYbulbF-41J2ui02u4-cU9AoaK-Pf5rcErwG72jf0o8RrUfBh4ef_uWE7QD-Sl67uaTpYUH3FPrArc8Ftx3psTdhQbrz2EXgeJJ6ZRVLvAwwCQBVx1U33BAB-AwBdNbBndUoWropdedtvtRNRMhUu7pFJHSNjbNLGMxEypNgUjrQjzJrBOUEsOBJVoqlxaxhAgqM0jAKJ5xIlMhiSbsDO3myxzOEY5jrS23LmWBJs-s0DoDwbTmzDifz-QFqnmFzD82bS_mW11c_rF_hw760-FgPngcPV2hQ28Cj6mi9BrtFqsSbtC--Sze16vbYLYvtJGY5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+62nd+ACM%2FIEEE+Design+Automation+Conference+%28DAC%29&rft.atitle=EnQode%3A+Fast+Amplitude+Embedding+for+Quantum+Machine+Learning+Using+Classical+Data&rft.au=Han%2C+Jason&rft.au=DiBrita%2C+Nicholas+S.&rft.au=Cho%2C+Younghyun&rft.au=Luo%2C+Hengrui&rft.date=2025-06-22&rft.pub=IEEE&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FDAC63849.2025.11132921&rft.externalDocID=11132921