DARIS: An Oversubscribed Spatio-Temporal Scheduler for Real-Time DNN Inference on GPUs

The widespread use of Deep Neural Networks (DNNs) is limited by high computational demands, especially in constrained environments. GPUs, though effective accelerators, often face underutilization and rely on coarse-grained scheduling. This paper introduces DARIS, a priority-based real-time DNN sche...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 62nd ACM/IEEE Design Automation Conference (DAC) s. 1 - 7
Hlavní autoři: Babaei, Amir Fakhim, Chantem, Thidapat
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 22.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The widespread use of Deep Neural Networks (DNNs) is limited by high computational demands, especially in constrained environments. GPUs, though effective accelerators, often face underutilization and rely on coarse-grained scheduling. This paper introduces DARIS, a priority-based real-time DNN scheduler for GPUs, utilizing NVIDIA's MPS and CUDA streaming for spatial sharing, and a synchronization-based staging method for temporal partitioning. In particular, DARIS improves GPU utilization and uniquely analyzes GPU concurrency by oversubscribing computing resources. It also supports zero-delay DNN migration between GPU partitions. Experiments show DARIS improves throughput by 15 \% and 11.5 \% over batching and state-of-the-art schedulers, respectively, even without batching. All high-priority tasks meet deadlines, with low-priority tasks having under 2% deadline miss rate. High-priority response times are 33% better than those of low-priority tasks.
DOI:10.1109/DAC63849.2025.11132423